
Easter Term 2022 Richard Weber

OPTIMIZATION

Contents

1 Convexity 1

1.1 Generic optimization problem . 1

1.2 Gradient descent . 2

1.3 Convexity . 2

2 Gradient descent and Newton’s method 5

2.1 Second-order conditions . 5

2.2 Convergence of gradient descent . 5

2.3 Newton’s method . 7

2.4 *Neural networks* . 9

3 Lagrangian Methods 11

3.1 The Lagrangian sufficiency theorem 11

3.2 Example: use of the Lagrangian sufficiency theorem 12

3.3 Strategy to solve problems with the Lagrangian sufficiency theorem 12

3.4 Example: further use of the Lagrangian sufficiency theorem 13

3.5 Inequality constraints and complementary slackness 14

3.6 Lagrangian methods might not work 15

3.7 *Large deviations* . 15

3.8 Example: use of the Lagrangian sufficiency theorem 16

4 The Lagrangian Dual 18

4.1 Lagrangian necessity . 18

4.2 Shadow prices . 19

4.3 The Lagrangian dual problem . 19

4.4 Barrier methods . 21

5 Linear Programming 23

5.1 Extreme points and optimality . 23

5.2 Basic solutions . 24

5.3 Preview of the simplex method . 27

i

6 The Simplex Method 28

6.1 The simplex algorithm . 28

6.2 Choice of initial basic feasible solution 31

6.3 Choice of pivot column . 31

7 The Dual Linear Program 33

7.1 The dual problem for LP . 33

7.2 The weak duality theorem in the case of LP 34

7.3 Sufficient conditions for optimality 34

7.4 The utility of primal-dual theory 35

7.5 Primal-dual relationships . 35

8 Shadow prices 37

8.1 Dual problem and the final tableau 37

8.2 Shadow prices and sensitivity analysis 37

8.3 Shadow prices and the diet problem 39

9 Two Person Zero-Sum Games 41

9.1 Games with a saddle-point . 41

9.2 Example: Two-finger Morra, a game without a saddle-point 42

9.3 Determination of an optimal strategy 42

9.4 Example: Colonel Blotto . 45

9.5 Example: Enforcer-evader game . 46

9.6 Example: Hider-searcher game . 47

10 Maximal Flow in a Network 48

10.1 Max-flow/min-cut theory . 48

10.2 Ford-Fulkerson algorithm . 50

10.3 Hall’s matching theorem . 51

11 Minimum Cost Circulation Problems 52

11.1 Minimal cost circulations . 52

11.2 Sufficient conditions for a minimal cost circulation 52

11.3 The transportation problem . 53

11.4 Example: optimal power generation and distribution 55

12 Transportation and Assignment Problems 57

12.1 The transportation algorithm . 57

12.2 The assignment problem . 61

12.3 *Simplex-on-a-graph* . 63

ii

Index 64

iii

1 Convexity

1.1 Generic optimization problem

Sometimes our aim is to optimize a system. But even if optimization is not the
primary aim, the process of optimization can be a useful tool for testing a model’s
validity. We find an ‘optimal solution’ and then appraise it against common-sense,
data, and sensitivity to assumptions – to refine and improve our model.

All problems in this course are of the following form.

minimize f(x)
subject to g(x) = b

x ∈ X

where
x ∈ Rn (n decision variables)

f : Rn → R (objective function)
X ⊆ Rn (regional constraints)

g : Rn → Rm (m functional equations)
b ∈ Rm

Maximizing f(x) is the same as minimizing −f(x).
‘Obvious’ constraints like x ≥ 0 are expressed by regional constraints, defining

X appropriately; more complicated constraints, that may change differ between
instances of the problem, are expressed by functional constraints. Sometimes the
choice is for mathematical convenience. Solution methods typically treat regional
and functional constraints differently.

The constraints define the feasible set for x, denoted

X(b) = {x : g(x) = b, x ∈ X}.

The problem is feasible if X(b) is nonempty and bounded if f(x) is bounded
from below on X(b). If x∗ minimizes f over X(b) then it is an optimal solution.

A constraint of the form g(x) ≤ b can be turned into an equality constraint by
the addition of a slack variable z. Write

g(x) + z = b, z ≥ 0.

It is frequently mathematically convenient to turn all our constraints into equalities.

Things you already know: Taylor’s theorem, Cauchy-Schwarz inequality, the
gradient, the Hessian, convexity, matrix algebra.

1

1.2 Gradient descent

Consider a problem whose only constraint is x ∈ Rn;

minimize
x∈Rn

f(x).

An intuitive idea is start at some initial x0 and make a sequence of small steps,
each “downhill”. The steepest downhill direction from x0 is −∇f(x0). This is
because for a unit vector u such that ||u|| = 1, and t > 0, we have the multi-
dimensional Taylor’s theorem that

f(x0 + tu) = f(x0) + t∇f(xk)⊤u+ o(t).

Recall the definition of gradient:

∇f(x)⊤ =

(
df(x)

dx1
, . . . ,

df(x)

dxn

)
.

By Cauchy-Schwarz we see that ∇f(xk)⊤u is minimized by the unit vector
u = −∇f(xk)/||∇f(xk)||.

Gradient descent algorithm

1. Start with an initial guess x0 ∈ Rn.

2. Pick a step size t > 0.

3. For every k = 0, 1, . . . , let xk+1 = xk − t∇f(xk).
When does this work? Consider f(x) = x2. We find xk+1 = xk − t(2xk) =

(1 − 2t)xk and so convergence to x∗ = 0 requires t < 1. Note that the sequence
x0, x1, . . . alternates either side 0 when t ∈ (1/2, 1).

1.3 Convexity

Definition 1.1. A set S ⊆ Rn is a convex set if for all x, y ∈ S and 0 ≤ λ ≤ 1
the point λx+ (1− λ)y ∈ S.
In other words, the line segment joining x and y lies entirely in S.

For functions defined on convex sets we make the following further definitions.

Definition 1.2. f : S → R is a convex function on convex set S if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for all 0 < λ < 1.

f is strictly convex if the inequality is always strict;

f is strongly convex if there exists α > 0 such that f(x)− (α/2)||x||2 is convex;

f is a concave function if −f is convex.

2

For example, f(x) = x2 is strictly convex and f(x) = log(x) is strictly concave.
Linear functions are both convex and concave.

Equivalently, f is convex if the set above its graph (called its epigraph) is
convex, epi(f) = {(x, t) : f(x) ≤ t}.

Convexity assumptions rule out behaviours that would prevent the steepest de-
scent algorithm from working (see Theorem 1.3). We begin with an important
characterization of convexity.

Theorem 1.1 (Supporting hyperplane theorem). Let f : S → R, with S a
convex set. Then f is convex if and only if for every x ∈ S there exists λ(x) ∈ Rn

such that for all y,

f(y) ≥ f(x) + λ(x)⊤(y − x). (1)

If f is differentiable, then λ(x) = ∇f(x).

Proof. “⇐” Suppose y, z,∈ S, x = py+ qz, where 0 < p = 1− q < 1. If λ(x) exists
then

pf(y) + qf(z) ≥ p[f(x) + λ(x)⊤(y − x)] + q[f(x) + λ(x)⊤(z − x)]

= f(x).

“⇒” is true in general, but we prove only for f differentiable. Since f is convex:

f(x+ p(y − x))− f(x)

p
≤ f(y)− f(x).

Let p↘ 0 and simplify the left hand side with vector calculus. The vector λ(x) =
∇f(x) satisfies the desired inequality.

The following corollary provides a first-order condition for a minimum.

Theorem 1.2. If f is convex and differentiable, x∗ is feasible, and ∇f(x∗) = 0
then x∗ is a global minimizer of f .

Theorem 1.3. Let f : S → R, with S a convex set. Then
(a) f is convex =⇒ every local minimum is a global minimum;
(b) f strictly convex =⇒ the global minimum is unique;
(c) f is continuous and strongly convex, and S ⊆ Rn closed, =⇒ there exists an
optimal solution to the problem of minimizing f over S.

Proof. (a) Consider a local minimum x∗, let y be any other point in S, and z =
(1 − λ)x∗ + λy. Since f(x∗) ≤ f(z) for all sufficiently small λ, we have f(x∗) ≤
f(z) ≤ (1− λ)f(x∗) + λf(y), which implies f(x∗) ≤ f(y).

3

(b) Suppose x∗, y∗ are both optimal solution. Since S is convex z = 1
2x
∗ + 1

2y
∗

is feasible, so
f(z) = f

(
1
2x
∗ + 1

2y
∗) < 1

2f(x
∗) + 1

2f(y
∗)

which contradicts the optimality of x∗ and y∗.
(c) As f(x)− (α/2)||x||2 is convex, the supporting hyperplane theorem gives

f(x)− (α/2)||x||2 ≥ f(0)− (α/2)||0||2 + λ(0)⊤(x− 0).

Let λ = λ(0). By Cauchy-Schwarz λ⊤x ≥ −||λ|| ||x||, so if ||x|| > R = 2||λ||/α,

f(x) ≥ f(0)− ||λ|| ||x||+ (α/2)||x||2 > f(0).

So we may restrict to minimizing over the region where ||x|| ≤ R. We know from
analysis that a continuous function attains its minimum on a compact set.

Strong-convexity puts a bound the sub-optimality of x, as follows.

Theorem 1.4 (Lower bound on the gradient). Suppose f : S → R is differ-
entiable and strongly convex with constant α > 0. Then for any x, y ∈ S

||∇f(x)||2 ≥ 2α
(
f(x)− f(y)

)
.

Note that if y = x∗ is the minimizer of f then

f(x∗) ≥ f(x)− 1

2α
||∇f(x)||2.

Proof. By the supporting hyperplane theorem applied to f(x)− (α/2)||x||2,

f(y)− (α/2)||y||2 ≥ f(x)− (α/2)||x||2 + (∇f(x)− αx)⊤ (y − x)

⇐⇒ f(y)− f(x) ≥ ∇f(x)⊤(y − x) + (α/2)||y − x||2 (2)

=
α

2

∥∥∥∥(y − x) +
1

α
∇f(x)

∥∥∥∥2 − 1

2α
||∇f(x)||2

≥ − 1

2α
||∇f(x)||2,

minimizing the penultimate line at y = x−∇f(x)/α.

4

2 Gradient descent and Newton’s method

2.1 Second-order conditions

Definition 2.1. A n×n symmetric matrix is non-negative definite if x⊤Ax ≥ 0
for every x ∈ Rn.

The Hessian, ∇2f(x), is the n×n matrix whose i, jth element is d2f(x)/dxidxj.

Theorem 2.1. If ∇2f(x) is non-negative definite for all x then f is convex.

Proof. For any x, y ∈ S we have by the multivariate version of Taylor’s theorem

f(y) = f(x) +∇f(x)⊤(y − x) + 1
2(y − x)⊤∇2f(ξ)(y − x)

where ξ = px+ (1− p)y for some 0 < p < 1. Hence, taking λ(x) = ∇(x),

f(y) ≥ f(x) + λ(x)⊤(y − x)

for all y. By the supporting hyperplane theorem f is convex.

The converse of this result also holds under mild assumptions.1

Recall that f is strongly convex if f(x) − (α/2)||x||2 is convex for some α >

0. If f is differentiable then (as shown in proving Theorem 1.4) the supporting
hyperplane theorem implies this is equivalent to

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
||x− y||2 (3)

and if f is twice differentiable then it is equivalent to ∇2f(x) − αI being non-
negative definite (Theorem 2.1). We write this as αI ⪯ ∇2f(x).

Definition 2.2. For symmetric matrices A and B we write A ⪯ B to mean that
B − A is non-negative definite.

2.2 Convergence of gradient descent

Thinking again about steepest descent, what should t be and how fast does f(xk)
approach the minimum? (In machine-learning t is called the learning-rate.) We
assume the following smoothness condition.

1If f is convex and differentiable, then f(y) ≥ f(x) +∇f(x)⊤(y − x), and so from the Taylor expansion above,
1
2 (y − x)⊤∇2f(ξ)(y − x) ≥ 0. Consider what this implies for y = x+ tx and t→ 0.

5

Definition 2.3. f is said to be β-smooth if

||∇f(x)−∇f(y)|| ≤ β||x− y||.

If f is twice differentiable β-smoothness is equivalent to ∇2f(x) ⪯ βI for all x.2

Theorem 2.2. If f is β-smooth then

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
||x− y||2, (4)

Compare (3) and (4).

Proof.

f(y)− f(x)−∇f(x)⊤(y − x) =

∫ 1

0

[∇f(x+ t(y − x))−∇f(x)]⊤(y − x) dt

≤
∫ 1

0

||∇f(x+ t(y − x))−∇f(x)|| · ||y − x|| dt

≤ β||x− y||2
∫ 1

0

t dt

=
β

2
||y − x||2.

This suggests a good learning rate. The right hand side of (4) is quadratic in
(x− y) and minimized by y = x− (1/β)∇f(x), so if we take t = 1/β then

f (xk+1)− f(xk)) ≤ −
1

2β
||∇f(xk)||2.

Now we can give conditions under which steepest descent converges nicely.

Theorem 2.3. Suppose f is twice differentiable and there are positive constants α,
β such that

αI ⪯ ∇2f(x) ⪯ βI

for all x. Then applying the gradient descent algorithm with t = 1/β we have

f(xk)− f(x∗) ≤
(
1− α

β

)k

(f(x0)− f(x∗)).

2We omit the proof, but essentially: β-smoothness needs ||∇f(x + h) − ∇f(x)|| ≈ ||∇2f(x)⊤h|| ≤ β||h||. This
holds iff the greatest eigenvalue of ∇2f(x) is no more than β, which is iff ∇2f(x) ⪯ βI.

6

Proof. Let xk+1 = xk− (1/β)∇f(xk). Using Taylor expansion and the lower bound
on the gradient (Theorem 1.4), that ||∇f(xk)||2 ≥ 2α(f(xk)− f(x∗),

f(xk+1)− f(xk) = ∇f(xk)⊤(xk+1 − xk) +
1
2(xk+1 − xk)

⊤∇2f(ξ)(xk+1 − xk)

≤ ∇f(xk)⊤(xk+1 − xk) +
β

2
||xk+1 − xk||2

= − 1

2β
||∇f(xk)||2

≤ −α
β
(f(xk)− f(x∗)).

So f(xk+1)−f(x∗) ≤ (1− α
β)(f(xk)−f(x∗)) and the result follows by induction.

Note that the theorem holds without the assumption of a second derivative. We
need only that f is α-strongly convex and β-smooth. We reach the second line of
the above proof by using (4) of Theorem 2.2 instead of using Taylor expansion.

The ratio β/α is called the condition number.

Example 2.1. Consider f(x) = 1
2(x

2
1 + 100x2). The Hessian is

∇2f(x) =

(
1 0
0 100

)
.

So α = 1, β = 100. Condition number is 100. Gradient descent with t = 1/β is(
x1
x2

)
k+1

=

(
x1
x2

)
k

− 1
100

(
x1

100x2

)
k

=

(
0.99x1

0

)
k

So x1(k) hardly changes and it will take many iterations to converge.
But if we make a simple rescaling, setting y = 10x2, then the condition number

of f(x1, y) = (1/2)(x21 + y2) is 1 and convergence needs just a single step.

2.3 Newton’s method

Suppose f is twice differentiable. Taylor’s theorem gives

f(x) ≈ f(x0) + (x− x0)
⊤∇f(x0) + 1

2(x− x0)
⊤∇2f(x0)(x− x0).

The right hand side is minimized by x = x0 − (∇2f(x0))
−1∇f(x0).

Newton’s method

1. Start with an initial guess x0 ∈ Rn.

2. For every k = 0, 1, . . ., let xk+1 = xk − (∇2f(xk))
−1∇f(xk).

7

Taylor

Beta Smooth

Definition 2.4. Suppose A is n × n. Let ||A|| be the smallest constant, a, such
that ||Az|| ≤ a||z|| for all z ∈ Rn. If A is non-negative definite then ||A|| is the
largest eigenvalue of A.

Theorem 2.4. Suppose f is twice differentiable and there are constants α,L > 0
such that

αI ⪯ ∇2f(x)

||∇2f(x)−∇2f(y)|| ≤ L||x− y||
for all x, y ∈ Rn. Then with Newton’s method

f(xk)− f(x∗) ≤ 2α3

L2

(
L

2α2
||∇f(x0)||

)2k+1

.

The exponent of 2k means the rate of convergence is much faster than with
gradient descent. Note that we need to start at an x0 such that ||∇f(x0)|| < 2α2/L.
We might find such an x0 by starting with a few steps of gradient descent.

Example 2.2. With f(x) = 1
2(x

2
1 + 100x22) Newton’s method converges to the

minimum in just 1 step.(
x1
x2

)
1

=

(
x1
x2

)
0

−
(

1 0
0 100

)−1(
x1

100x2

)
0

=

(
0
0

)
.

Proof. *Non-examinable*. Let ∆k = xk+1 − xk. Since ∇f(xk) = ∇2f(xk)∆k,

∇f(xk+1) = ∇f(xk+1)−∇f(xk)−∇2f(xk)∆k

=

∫ 1

t=0

[
∇2f(xk + t∆k)−∇2f(xk)

]
∆k dt

This implies that

||∇f(xk+1)|| ≤ L||∆k||2
∫ 1

t=0

t dt = 1
2L||xk+1 − xk||2 ≤

L

2α2
||∇f(xk)||2

where we have used the fact that αI ⪯ ∇2f(x) implies ||(∇2f(x))−1|| ≤ 1/α. Hence

||∇f(xk)|| ≤
2α2

L

(
L

2α2
||∇f(x0)||

)2k

.

The lower bound on the gradient (Theorem 1.4) gives

f(xk)− f(x∗) ≤ 1

2α
||∇f(xk)||2 ≤

2α3

L2

(
L

2α2
||∇f(x0)||

)2k+1

.

8

2.4 *Neural networks*

Non-examinable Consider the following task of machine learning. We have
a set of n data records (yi, xi) in R × Rd, i = 1, . . . , n. We wish to construct a
function f : Rd → R which gives close to yi when the input is xi1, . . . , xid.

Consider an input x[0] ∈ Rd[0], d[0] = d. We construct a neural net-
work as follows. First, compute y[0] ∈ Rd[1] as the vector whose ith compo-
nent is wi[0]

⊤x[0] − bi[0], i.e. the inner product of x[0] and a vector of weights
wi[0] = (wi1[0], . . . , wid[0][0]), minus a bias bi[0]. Now set x[1] ∈ Rd[1] as the vec-
tor whose ith component is ϕ (yi[0]), where ϕ is a function to be specified below.
Continuing thus gives

yi[0] = wi[0]
⊤x[0]− bi[0], xi[1] = ϕ(yi[0]),

yi[1] = wi[1]
⊤x[1]− bi[1], xi[2] = ϕ(yi[1]), etc.

With a single-layer of d[1] hidden nodes, we would take d[2] = 1, bj[1] = 0, using
as our final output

y1[1](x[0]) =

d[1]∑
j=1

wj[1]ϕ(wj[0]
⊤x[0]− bj[0])

and seek to minimize over weights and biases,

Cost =
m∑
i=1

(yi − y1[1](xi)))
2.

Cost is computed over a training-set of m (< n) data points. We check that
the fitted model works well on the data not used in training. If ϕ(z) is linear this
amounts to no more than linear regression. But in fact we take σ as a non-linear
function, such as the sigmoid ϕ(z) = ex/(1 + ex), or ϕ(z) = max{z, 0}; this is
suggested by the way neurons are thought to operate in the brain. In the above
example there is only a single hidden layer, but we might have used 2 hidden layers
to fit yi[2](xi) to yi, say with d[0] = d, d[1] = d[2] = 10, d[3] = 1. The method has
been shown to work well with multiple hidden layers. The search for a minimum
over weights and biases relies on the gradient descent algorithm. May researchers
have worked with the MNIST database, which contains n = 60, 000 images of hand-
drawn digits, 0, 1, 2, . . . , 9, each of which is digitized to a grid of 28×28 = 784 (= d)
pixels. The training set is m = 10, 000. Error rates of 0.21% can be obtained.

9

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1: In this example f(x) takes values close to 0.2 or 0.9 within certain intervals. A neural
network with one hidden layer of five nodes was trained on 50 points. The blue curve is the resulting
model. Observe that if our aim is to discriminate whether or not f(x) > 0.55 then the fitted model
perfectly discriminates for almost all the points not used in training (those shown orange).

10

3 Lagrangian Methods

3.1 The Lagrangian sufficiency theorem

Consider again

P : minimize f(x) s.t. g(x) = b, x ∈ X,

X ⊆ Rn, b ∈ Rm (n variables and m constraints). The Lagrangian is defined as

L(x, λ) = f(x) + λ⊤(b− g(x)),

with λ ∈ Rm (one component for each constraint). Each component of λ is called
a Lagrange multiplier. The following theorem is extremely useful in practice.

Theorem 3.1 (Lagrangian sufficiency theorem). Let x∗ be feasible. Suppose
there exists λ∗ ∈ Rm such that

L(x∗, λ∗) ≤ L(x, λ∗) for all x ∈ X,

then x∗ is optimal for P.

Proof. For any feasible x and any λ we have

L(x, λ) = f(x) + λ⊤(b− g(x)) = f(x)

since g(x) = b. So if x∗ is feasible

f(x∗) = L(x∗, λ∗)

≤ L(x, λ∗) for all x ∈ X by assumption

= f(x) for all feasible x

Remarks.

1. There is no guarantee that we can find a λ∗ satisfying the conditions of the
theorem. However, there is a large class of problems for which λ∗ do exist.

2. At first sight the theorem offers us a method for testing that a solution x∗

is optimal for P without helping us to find x∗ if we don’t already know it.
Certainly we will sometimes use the theorem this way. But as in the following
example, we can find λ∗ by adjusting λ until some x∗(λ) is feasible.

11

3.2 Example: use of the Lagrangian sufficiency theorem

Example 3.1.

minimize x21 + 3x22
s.t. 2x1 + 3x2 = b

x ∈ X = R2.

Solution.

L(x, λ) = x21 + 3x22 + λ(b− 2x1 − 3x2).

By calculating dL/dxi =0, we find this is minimized with at x(λ) = (λ, λ/2). Note
that ∇2L(x, λ)|x=x(λ) is positive definite, so indeed it is a minimum that has been
found. This solution satisfies the constraint if

2x1(λ) + 3x2(λ) = b, requiring 2λ+ 3(λ/2) = b

which we can make happen by choosing λ = λ∗ = (2/7)b. Application of the
theorem shows that the optimal solution is x∗ = (2/7, 1, 7)b and the optimal value
is ϕ(b) = ((2/7)2 + 3(1/7)2)b2 = (1/7)b2. Observe that ϕ′(b) = (2/7)b = λ∗, an
important point that we will discuss later.

3.3 Strategy to solve problems with the Lagrangian sufficiency theorem

A strategy to find x∗, λ∗ satisfying the conditions of the theorem is as follows.

1. Consider the problem

minimize L(x, λ) subject to x ∈ X.

The only constraints are x ∈ X so this should be an easier problem to solve
than P. Identify the set of λ for which a finite optimum will be achieved:

Λ = {λ : min
x∈X

L(x, λ) > −∞}.

2. For λ ∈ Λ, the minimum will be obtained at some x(λ) (that depends on λ in
general). Typically, x(λ) will not be feasible for P.

3. Find λ∗ ∈ Λ such that x∗ = x(λ∗) is feasible. Then x∗ is optimal for P by the
theorem. (Think of λ as being a knob which you turn until x(λ) is feasible.)

12

3.4 Example: further use of the Lagrangian sufficiency theorem

Example 3.2.

minimize
1

1 + x1
+

1

2 + x2
s.t. x1 + x2 ≤ b, x1, x2 ≥ 0.

Solution. To handle the inequality constraint write x1 + x2 + x3 = b where x3 ≥ 0
is a slack variable. We define X = {x : x ≥ 0} and the Lagrangian is

L(x, λ) =
1

1 + x1
+

1

2 + x2
+ λ(b− x1 − x2 − x3)

=

(
1

1 + x1
− λx1

)
+

(
1

2 + x2
− λx2

)
− λx3 + λb.

Note that the term −λx3 has a finite minimum only if λ ≤ 0. If λ = 0 the minimum
would be as x1, x2 →∞, so in fact we must have λ < 0 and hence x3 should be 0.
Consider (

1

1 + x1
− λx1

)
and

(
1

2 + x2
− λx2

)
.

In the range x ≥ 0 a function of the form
(

1
a+x − λx

)
has its minimum at x = 0, if

this function is increasing at 0, or at the stationary point of the function, occurring
where x > 0, if the function is decreasing at 0. So the minimum occurs at

x(λ) =
(
−a+

√
−1/λ

)+
.

where c+ = max(0, c).

Now notice that x1(λ) + x2(λ) satisfies

x1(λ) + x2(λ) =
(
−1 +

√
−1/λ

)+
+
(
−2 +

√
−1/λ

)+

=


0 ≤ −1

−1 + 1/
√
−λ as λ ∈ [−1,−1/4]

−3 + 2/
√
−λ ∈ [−1/4, 0]

So we can see that x1(λ) + x2(λ) is an increasing and continuous function (al-
though it is not differentiable at λ = −1 and at λ = −1/4).

13

0λ

x1(λ) + x2(λ)

−1 +
1√
−λ

−3 +
2√
−λ

−1 −1
4

1

Thus (by the Intermediate Value Theorem) for any b > 0 there will be a unique
value of λ, say λ∗, for which x1(λ

∗) + x2(λ
∗) = b. This λ∗ and corresponding x∗

will satisfy the conditions of the theorem and so x∗ is optimal.
In fact, x∗ = (b, 0), b ≤ 1, and x∗ = 1

2(b+ 1, b− 1), b ≥ 1.

Examples of this kind are fairly common.

3.5 Inequality constraints and complementary slackness

In Example 3.2 we turned g(x) ≤ b into an equality constraint by introducing a
slack variable x3. In general we will be interested in problems such as

P: minimize f(x) s.t. g(x) ≤ b, x ∈ Rn,

b ∈ Rm. Rewrite the constraint as g(x) + z = b, where z ∈ Rm and z ≥ 0. The
Lagrangian is

L(x, z, λ) = f(x) + λ⊤(b− g(x)− z).

Minimizing freely over zj ≥ 0 we see that −λjzj is finite only if λj ≤ 0. Thus

Λ =

{
λ : λ ≤ 0, inf

x∈X
[f(x) + λ⊤(b− g(x)] > −∞

}
.

Moreover, if λj < 0 then −λjzj is minimized by z∗j = 0. Only if λj = 0 could z∗j > 0.
Either way, we must have λ∗z∗j = 0. This is called complementary slackness (of
z∗j and λ∗j).

14

3.6 Lagrangian methods might not work

Example 3.3. Consider for b > 0,

minimize f(x) s.t. x = b, x ≥ 0,

We form the Lagrangian and minimize freely over all x ≥ 0.

L(x, λ) = f(x) + λ(b− x).

If f(x) =
√
x then there is no λ for which the minimum is at x = b, so the

Lagrangian method does not work. But if f(x) = x2 then L(x, λ) is minimized at
x∗ = b by taking λ = 2b; in this case the Lagrangian method works.

Let b ∈ Rm and define the value function

ϕ(b) = inf
x∈X, g(x)=b

f(x)

for the family of problems indexed by b. In the above examples ϕ(b) =
√
b and

ϕ(b) = b2. It is the convexity of ϕ(b) = b2 that makes Lagrangian methods work.

3.7 *Large deviations*

Suppose we roll a die n times. The sum of the rolls is expected to be 3.5n. Suppose
it is 5n. What is the most likely way this large deviation from a typical result could
occur? This poses the problem

maximize
n1,...,n6

n!

n1! · · ·n6!
(1/6)n, s.t.

6∑
i=1

ini = 5n,
6∑

i=1

ni = n.

By use of Stirling’s approximation, setting pi = ni/n, the problem reduces to

maximize
p1,...,p6

6∑
i=1

−pi log pi s.t
6∑

i=1

ipi = 5,
6∑

i=1

pi = 1.

The Lagrangian is

L(p, (λ, µ)) =
6∑

i=1

−pi log pi + λ

(
5−

6∑
i=1

ipi

)
+ µ

(
1−

6∑
i=1

pi

)

and is minimized with pi = e−(1+µ+λi). Numerical solution for λ and µ gives p∗ =
(0.020, 0.039, 0.072, 0.136, 0.255, 0.478). As n→∞ the probability tends to 1 that
the dice rolls occur in close to these proportions, rather than, say, as n rolls of 5.

15

Replace with inequality if there is an inequality constraint.

3.8 Example: use of the Lagrangian sufficiency theorem

Here is an additional example, not done in lectures.

Example 3.4.

minimize x1 − x2 − 2x3

s.t. x1 + x2 + x3 = 5

x21 + x22 = 10

x ∈ X = R3.

Solution. Since we have two constraints we take λ ∈ R2 and write the Lagrangian

L(x, λ) = f(x) + λ⊤(b− g(x))

= x1 − x2 − 2x3 + λ1(5− x1 − x2 − x3) + λ2(10− x21 − x22)

=
[
x1(1− λ1)− λ2x

2
1

]
+
[
x2(−1− λ1)− λ2x

2
2

]
+
[
− x3(2 + λ1)

]
+ 5λ1 + 10λ2.

We first try to minimize L(x, λ) for fixed λ in x ∈ R3. Notice that we can minimize
each square bracket separately.

First notice that −x3(2 + λ1) has minimum −∞ unless λ1 = −2. So we only
want to consider λ1 = −2.

Observe that the terms in x1, x2 have a finite minimum only if λ2 < 0, in which
case the minimum occurs at a stationary point where,

∂L/∂x1 = 1− λ1 − 2λ2x1 = 0 =⇒ x1 = 3/(2λ2)

∂L/∂x2 = −1− λ1 − 2λ2x2 = 0 =⇒ x2 = 1/(2λ2).

Let Λ be the set of (λ1, λ2) such that L(x, λ) has a finite minimum. So

Λ = {λ : λ1 = −2, λ2 < 0},

and for λ ∈ Λ the minimum of L(x, λ) occurs at x(λ) = (3/(2λ2), 1/(2λ2), x3)
⊤.

For a feasible x(λ) we need

x21 + x22 = 10 =⇒ 9

4λ2
2

+
1

4λ2
2

= 10 =⇒ λ2 = 1/2.

So x1 = 3, x2 = 1 and x3 = 5− x1 − x2 = 1.

16

The conditions of the Lagrangian sufficiency theorem are satisfied by

x∗ = (3, 1, 1)⊤ and λ∗ = (−2,−1/2)⊤ .

So x∗ is optimal. Note that ∇2L is positive definite so we have indeed minimized
L. The minimum value is f(x∗) = 0

17

4 The Lagrangian Dual

4.1 Lagrangian necessity

Recall that for b ∈ Rm and the value function is

ϕ(b) = inf
x∈X, g(x)=b

f(x).

The following theorem explains when Lagrangian methods are guaranteed to work.

Theorem 4.1 (Lagrangian necessity). If the value function ϕ is convex and
finite then there exists λ (depending on b) such that

ϕ(b) = inf
x∈X

L(x, λ)

Furthermore, if ϕ is differentiable then λ = ∇ϕ(b).
Proof. If ϕ is convex then by the supporting hyperplane theorem there exists λ

such that ϕ(c) ≥ ϕ(b) + λ⊤(c− b) for all c. So

ϕ(b) = inf
c

[
ϕ(c) + λ⊤(b− c)

]
= inf

c
inf

x∈X, g(x)=c

[
f(x) + λ⊤(b− c)

]
= inf

c
inf

x∈X, g(x)=c

[
f(x) + λ⊤(b− g(x))

]
= inf

x∈X
L(x, λ).

When ϕ is differentiable then λ is the gradient vector ∇ϕ(b).
The following diagram illustrates the idea.

minL L = f(x)− λ⊤(g(x)− b)

f

g = c

b

φ(c)

φ(b)

feasible (g(x), f(x))

φ(b) + λ⊤(g − b)

λ⊤(g − b)

18

Replace with inequality if there is an inequality constraint.

Theorem 4.2 (Sufficient conditions for convexity of the value function).
Suppose

1. X is convex.

2. the objective function f is convex.

3. the functional constraint is of type g(x) ≤ b.

4. gi is convex for all 1 ≤ j ≤ m.

Then ϕ is convex.

The proof is on the examples sheet.

4.2 Shadow prices

Theorem 4.1 stated that if ϕ is differentiable then λ = ∇ϕ(b). So ϕ(b+ ϵ)−ϕ(b) ≈
λ⊤ϵ. We have seen that if constraints are of the form g(x) ≤ b, or equivalently
g(x) + z = b, z ≥ 0, then λ ≤ 0. If b increases to b + ϵ, ϵ > 0 then the weaker
constraint should mean the minimum can decrease. In fact, an increase of bj to
bj+ϵj will permit the minimized value to change by λjϵj, which is a (weak) decrease
since λj ≤ 0 (no change if λj = 0). For this reason the Lagrange multipliers are
also called shadow prices. An increase in bj by ϵj alters the cost by λjϵj. So we
should be willing to pay a price of −λj (> 0) per unit increase in bj.

4.3 The Lagrangian dual problem

We have defined the set

Λ = {λ : min
x∈X

L(x, λ) > −∞}.

For λ ∈ Λ define

L(λ) = min
x∈X

L(x, λ).

Let Xb = {x : x ∈ X, g(x) ≤ b}.

Theorem 4.3 (weak duality theorem). For any feasible x ∈ Xb and any λ ∈ Λ

f(x) ≥ L(λ).

Proof. For x ∈ Xb, λ ∈ Λ,

f(x) = L(x, λ) ≥ min
x∈Xb

L(x, λ) ≥ min
x∈X

L(x, λ) = L(λ).

19

Thus, provided the set Λ is non-empty, we can pick any λ ∈ λ, and observe that
L(λ) is a lower bound for the minimum value of the objective function f(x).

It is natural to seek the greatest lower bound, i.e., consider the problem

D: maximize L(λ) subject to λ ∈ Λ,

equivalently,

D: maximize
λ∈Λ

{
min
x∈X

L(x, λ)

}
.

This is known as the Lagrangian dual problem; the original problem is called
the primal problem. The optimal value of the dual is no more than the optimal
value of the primal. If they are equal we say there is strong duality. This happens
in many problems, including linear programs.

Economic interpretation Agent A can produce n products in any non-
negative amounts x1, . . . , xn, and sell them in the market for f(x1, . . . , xn). Pro-
duction of x requires gj(x) of resource j. If she has bj and g(x) − bj > 0 (of < 0)
then she can purchase (or sell) the deficit (or surplus). Suppose market prices for
these resources are λ1, . . . , λm (buying or selling). Her profit is thus

f(x) + λ⊤(b− g(x)).

She maximizes this at x(λ). In a competitive market prices will adjust to the point
such that the maximum profit which the agent can extract is minimized. Thus the
market solves the dual problem

minimize
λ

max
x≥0

[
f(x) + λ⊤(b− g(x))

]
.

Example 4.1. In Example 3.1, L was minimized at x∗(λ) = (λ, 12λ) and

L(λ) = L(x∗(λ), λ) = λ2 + 3
(
(12λ)

2 + λ(b− 2λ− 31
2λ
)

= λb− 7
4λ

2.

This is maximized over λ at λ∗ = 2
7b. Note that L(λ∗) = 1

7b
2 = ϕ(b). So indeed

strong duality holds in this example.

Example 4.2. In Example 3.2, Y = {λ : λ ≤ 0}. By substituting the optimal
value of x into L(x, λ) we obtain

L(λ) =


3/2 + λb ≤ −1

1/2 + 2
√
−λ+ (b+ 1)λ as λ ∈ [−1,−1/4]

4
√
−λ+ (b+ 3)λ ∈ [−1/4, 0]

20

We can solve the dual problem, which is to maximizeL(λ) s.t. λ ≤ 0. The solution
lies in −1 ≤ λ ≤ −1/4 if 0 ≤ b ≤ 1 and in −1/4 ≤ λ ≤ 0 if 1 ≤ b. You can confirm
that for all b the primal and dual here have the same optimal values.

4.4 Barrier methods

Consider
P : minimize f(x) s.t. g(x) ≤ b, x ∈ Rn,

where f and g are convex and differentiable. Now consider the family of uncon-
strained minimization problems, ϵ > 0,

Pϵ : minimize f(x)− ϵ
m∑
j=1

log(bj − gj(x)).

Since log(x)→ −∞ as x→ 0 this ensures Pϵ will be solved away from the boundary,
with gj(x) < bj. The nice thing about having the minimum away from the boundary
is that it will be at a stationary point.

Theorem 4.4. Suppose x∗ and xϵ are optimal for P and Pϵ respectively. Then

0 ≤ f(xϵ)− f(x∗) ≤ mϵ.

Proof. The objective function for Pϵ occurs away from the boundaries, at a station-
ary point, where

∇f(xϵ) + ϵ

m∑
j=1

∇gj(xϵ)
bj − gj(xϵ)

= 0.

Suppose we take λ such that

λ̄i = −
ϵ

bi − gi(xϵ)
.

Then the Lagrangian for P is stationary where

∇[f(x) + λ̄⊤(b− g(x))] = ∇f(x)− λ̄⊤∇g(x) = 0.

This occurs at x = xϵ. So by weak duality

f(x∗) ≥ L(λ̄)

≥ inf
x

f(x) + λ̄⊤(b− g(x))

= f(xϵ) + λ̄⊤(b− g(xϵ))

= f(xϵ)−mϵ.

21

A potential method is to start at x0, ϵ0, k = 0. Solve Pϵk by gradient descent or
Newton’s method, starting from xk, to obtain a better solution xk+1; set ϵk+1 =

1
2ϵk.

Repeat with k :→ k + 1.

Here is one further example of a dual problem (not done in lectures.)

Example 4.3. In Example 3.4 we had Y = {λ : λ1 = −2, λ2 < 0} and that
minx∈X L(x, λ) occurred at x(λ) = (3/(2λ2), 1/(2λ2), x3). Thus

L(λ) = L(x(λ), λ) =
5

2λ2
+ 10 + 10λ2 .

The dual problem is thus

maximize
λ2<0

{
5

2λ2
+ 10 + 10λ2

}
.

The max is at λ2 = −1/2, and the primal and dual have the same optimal value,
namely 0. Again, strong duality holds.

22

5 Linear Programming

5.1 Extreme points and optimality

Consider the problem

P: maximize x1 + x2

subject to x1 + 2x2 ≤ 6
x1 − x2 ≤ 3
x1, x2 ≥ 0.

This is instance of the linear programming problem:

maximize c⊤x : Ax ≤ b, x ≥ 0.

It is obvious that c⊤x is minimized at a ‘corner’ of the feasible set, for any linear
objective function. In the instance c⊤ = (1, 1) and the maximum is at corner C,
where x = (4, 1), c⊤x = 5.

A B

C

D

E

F

x1 = 0

x2 = 0

x1 + 2x2 = 6

x1 − x2 = 3

x1

x2

If the objective function had been x1+2x3 then it would lie parallel to the edge
from C to D, and all points on this edge would be optimal with c⊤x = 5, but there
is always an optimum at a corner. This motivates the following definition.

Definition 5.1. We say that x is an extreme point of a convex set S if whenever
x = θy + (1− θ)z, for y, z ∈ S, 0 < θ < 1, then x = y = z.

In other words, x is not in the interior of any line segment within S.

23

all boundary points
are extreme

corners are the only extreme poin

not extreme

Figure 2: Examples of extreme points of two convex sets

Theorem 5.1 (Fundamental Theorem of LP). If an LP is feasible and bounded
then it has an optimum at an extreme point of the feasible set.

In LP the feasible set will always have a finite number of extreme points (ver-
tices). The feasible set is ‘polyhedral’, though it may be bounded or unbounded.
This suggests the following algorithm for solving LPs.

1. Find all the vertices of the feasible set.
2. Pick the best one.

This will work, but is inefficient, becasue there may be very many vertices.
X(b) = {x : Ax ≤ b, x ≥ 0} can have

(
n+m
m

)
vertices. So if m = n, say, then the

number of vertices increases exponentially in n.

5.2 Basic solutions

We develop now a more algebraic (less geometric) characterisation of the extreme
points. We write P with equality constraints, using slack variables.

P: maximize x1 + x2
subject to x1 + 2x2 + z1 = 6

x1 − x2 + z2 = 3
x1, x2, z1, z2 ≥ 0

Let us rewrite the constraint as Ax = b, by relabeling z1 and z2 as x3 and x4. So

(
1 2 1 0
1 −1 0 1

)
x1
x2
x3
x4

 =

(
6
3

)
.

We can calculate the value of the variables at each of the
(
4
2

)
= 6 points marked

A–F in our picture of the feasible set for P. For example, to calculate E we solve(
A1 A4

)(x1
x4

)
= b, i.e.

(
1 0
1 1

)(
x1
x4

)
=

(
6
3

)
24

where Ai denotes the ith column of A. The values are:

x1 x2 z1 z2 f
A 0 0 6 3 0
B 3 0 3 0 3
C 4 1 0 0 5
D 0 3 0 6 3
E 6 0 0 −3 6
F 0 −3 12 0 −3

As expected, at each point two variables are non-zero and the other two are zero.

Geometrically: The 4 lines defining the feasible set can be written x1 = 0;
x2 = 0; z1 = 0; z2 = 0. At the intersection of each pair, two variables are zero.

Algebraically: Ax = b is composed of 2 equations in 4 unknowns. If we choose
2 variables (which can be done in

(
4
2

)
= 6 ways) and set them equal to zero we will

be left with two equations in the other two variables. So (provided A and b are
‘nice’) there will be a unique solution for the two non-zero variables.

Definition 5.2.

� The support of a vector x is the set of indices S(x) = {i : xi ̸= 0}.

� A basic solution to Ax = b is a solution whose support is no more than m.
That is, there exists B ⊂ {1, . . . , n} with |B| = m, such that xi = 0 if i ̸∈ B.

� Set B is called the basis; xi is called basic if i ∈ B and non-basic if i /∈ B.

� A basic solution x is non-degenerate if exactly n−m variables are zero, i.e.
|S(x)| is exactly m.

� If a basic solution satisfies x ≥ 0 then it is called a basic feasible solution.

So A–F are basic solutions (and non-degenerate) and A–D are basic feasible
solutions. From now on we make some assumptions that eliminate some (but not
all) causes of degeneracy.

Assumption 5.1. The m× n matrix A, with m ≤ n, has the property that

� The m rows of A are linearly independent, i.e. A has rank m.

� Any m columns of A are linearly independent.

Given a basis, B, we let AB denote the m×m matrix whose columns are the m
columns of A whose indices are in B. Assumption 5.1 ensures that AB is invertible

25

and so xB = A−1B b is a basic solution. However, some components of xB may be 0,
giving degeneracy.

Some degeneracy cannot be removed. As an example, consider the simplex
looking like a pyramid in R3, with square base and four sloping sides, defined by
x3−x1 ≤ 0, x3−x2 ≤ 0, x1+x3 ≤ 2, x2+x3 ≤ 2, x1, x2, x3 ≥ 0. After adding 4 slack
variables we have Ax = b with A being 4× 7 and satisfying Assumption 5.1. The
vertex (x, z) = (1, 1, 1, 0, 0, 0, 0) is at the intersection of 4 planes and the number of
non-zero variables is 3, not 4. In theory, degeneracy can cause the simplex algorithm
to cycle and so fail to converge, but in practice this is not seen to happen.

Theorem 5.2. A vector is a basic feasible solution of Ax = b if and only if it is
an extreme point of the set X(b) = {x : Ax = b, x ≥ 0}.
Proof. Suppose x is not a b.f.s. So |S(x)| > m. Then there exists y such that
S(y) ⊆ S(x) and Ay = 0. But then x is the midpoint of x + ϵy and x − ϵy, both
of which lie in X(b) for small enough non-zero ϵ. So x is not an extreme point.

Suppose x is not an extreme point, so that x = δy + (1− δ)z for some distinct
y, z ∈ X(b), 0 < δ < 1. Then Az = Ax = b = Az + δA(y − z). Now A(y − z) = 0
implies |S(y−z)| > m, but S(y−z) ⊆ S(x). So |S(x)| > m and x is not a b.f.s.

Theorem 5.3. If a linear program is feasible and bounded, then it has an optimal
solution that is a basic feasible solution.

Proof. Suppose x is an optimal solution, but not basic. Then there exists nonzero
y s.t. S(y) ⊆ S(x) and Ay = 0. Consider x(ϵ) = x + ϵy. Suppose we are wishing
to maximize c⊤x. Choose y such that c⊤y ≥ 0. Clearly there exist some ϵ > 0 such
that c⊤x(ϵ) ≥ c⊤x, x(ϵ) ≥ 0, and Ax(ϵ) = Ax = b, but |S(x(ϵ)| < |S(x)|.

Taking Theorems 5.2 and 5.3 together, we have proved Theorem 5.1. So we can
do algebra instead of drawing a picture (which is good for a computer, and good
for us. A simple (and foolish) algorithm is:

1. Find all the basic solutions.
2. Test to see which are feasible.
3. Choose the best basic feasible solution.

In Step 1, to find a basic solution we choose a basis setB ⊂ {1, . . . , n} with |B| = m.
This can be done in

(
n
m

)
ways. Let N = {1, . . . , n} \ B. If B = {i1, . . . , im} we let

AB be the m×m matrix
AB = (Ai1 · · ·Aim)

where Aj is the jth column of A. In our example above, the basic feasible solution
at C is with B = {1, 2}, N = {3, 4}.

26

Similarly AN is assembled from the columns of A indexed by N . The constraint

ABxB + ANxN = b =⇒ xB = A−1B b− A−1B ANxN

Since we are taking xN = 0 this is xB = A−1B b which is feasible if non-negative.
Unfortunately it is not usually easy to know which basic solutions will turn out to be
feasible before calculating them. Hence, even though there are often considerably
fewer basic feasible solutions we will still need to calculate all

(
n
m

)
basic solutions.

5.3 Preview of the simplex method

Simplex algorithm:

1. Start with a basic feasible solution.
2. Test — is it optimal?
3. If YES — stop.
4. If NO, move to ‘adjacent’ and better b.f.s. Return to 2.

The name comes from the fact that the convex hull of a finite set of extreme
point is called a simplex.

After substituting xB = A−1B b− A−1B ANxN the objective function is written

c⊤x = c⊤BxB + c⊤NxN

= c⊤BA
−1
B b+ (c⊤N − c⊤BA

−1
B AN)xN

This helps with Step 2. If

y⊤ = (c⊤N − c⊤BA
−1
B AN) ≤ 0

then for any choice of xN ≥ 0 we have c⊤x ≤ c⊤BA
−1
B b and hence (xB, xN) = (A−1B b, 0)

is optimal.
But if some component of y, is positive, then we can increase the value of

the objective function by increasing the value of the corresponding component of
xN from its current value of 0. As we increase that component we must maintain
Ax = b and so other variables will need to change appropriately. Most importantly,
xB = A−1B b−A−1B ANxN must stay non-negative. So we can increase that component
until some component of xB reduces to zero. At that point we have a new basic
feasible solution, whose basis has had one deletion and one addition. The new basic
feasible solution has a strictly greater value of c⊤x.

27

6 The Simplex Method

6.1 The simplex algorithm

Let us look closely at problem P and apply the simplex algorithm.

Simplex algorithm:

1. Start with a basic feasible solution.
2. Test — is it optimal?
3. If YES — stop.
4. If NO, move to ‘adjacent’ and better b.f.s. Return to 2.

We express information about a basic feasible solution in a table called the simplex
tableau. At each step we update the tableau as we move to a better basic feasible
solution. To illustrate, we start with the tableau for P in last lecture:

x1 x2 z1 z2 ai0

z1 1 2 1 0 6

z2 1 −1 0 1 3

a0j 1 1 0 0 0

The initial basis is B = {3, 4}, corresponding to point A where (x1, x2) = (0, 0).

The first two rows express Ax = b. (Think of z1, z2 as also being x3, x4.)

The third row contains (c⊤, 0) = (c⊤N , c
⊤
B).

In the lower right corner we have −c⊤BA−1B b, the negative of the current value of the
objective function. For this B, c⊤B = (0, 0) and c⊤N = (1, 1).

In general the tableau contains this information:3

m︷ ︸︸ ︷ n−m︷ ︸︸ ︷ 1︷ ︸︸ ︷
xB xN

m

{
A−1B AB = I A−1B AN A−1B b

1

{
cTB − cTBA

−1
B AB = 0 cTN − cTBA

−1
B AN −cTBA−1B b

3The columns of the tableau have been permuted so that columns corresponding to the basis appear on the left.
This has been done just for convenience: in practice we will always be able to identify the columns corresponding to
the basis by the columns corresponding to the embedded identity matrix.

28

The first m rows contain A = (AB AN) and the column vector b, multiplied by
A−1B . Notice that for any basis B, a linear program with constraints A−1B Ax = A−1B b
is equivalent to one with constraints Ax = b. The first n columns of the last row
are equal to cT − λTA for λT = cTBA

−1
B . We will see next lecture that λ can be

interpreted as a solution, not necessarily feasible, to the dual problem. In the last
column of the last row we finally have the value −c⊤x, where x is the b.f.s. with
xB = A−1B b and xN = 0.

All calculations of the algorithm will correspond to adding multiples of rows
of the tableau to other rows or multiplying rows by constants. The tableau will
always look like this:

x1 xi xn

aij ai0

a0j a00

Thinking of the vertical rule as “=”, the rows in the table simply express equations

ai1x1 + · · ·+ ainxn = ai0

The last row can be read as

a01x1 + · · ·+ a0nxn = a00 + f

where f denotes the value of the objective function c⊤x, but is not explicitly shown.
You can imagine there is an invisible column at the far right for variable f consisting
of (0, . . . , 0, 1)⊤.

The algorithm is

1. Choose a pivot column. Choose a variable that is currently not in the
basis which will now enter the basis. Suppose we are trying to maximize c⊤x.
Examine the last row of the tableau and pick a j such that a0j > 0. In other
words, we find a component of (c⊤N−c⊤BA−1B AN) that is positive. This identifies
the pivot column. (The variable corresponding to column j will enter the
basis.) If all a0j ≤ 0, j ≥ 1, then the current solution is optimal.

Suppose we pick j = 1, so x1 is entering the basis.

2. Find the pivot row. Suppose aij > 0. As xj increases, a variable xi which
is in the basis, must decrease in order to maintain the equation in row i of

29

aijxj + xi = ai0. As xj increases to ai0/aij, xi decreases to 0. Choose i to
minimize ai0/aij from the set {i : aij > 0} and hence discover which basic
variable must leave the basis. This identifies i as the pivot row. If aij ≤ 0 for
all i then the problem is unbounded (see examples sheet) and the objective
function can be increased without limit. If there is more than one i minimizing
ai0/aij the problem has a degenerate basic feasible solution (see example sheet.)
For small problems you will be fine if you just choose any one of them and
carry on regardless.

The pivot is at the intersection of the pivot row and pivot column.

In the example, row 2 is the pivot row since 3/1 < 6/1, so the variable corre-
sponding to equation 2 leaves the basis, i.e. z2.

x1 x2 z1 z2 ai0

z1 1 2 1 0 6

z2 1 −1 0 1 3

a0j 1 1 0 0 0

−→
x1 x2 z1 z2 ai0

z1 0 3 1 −1 3

x1 1 −1 0 1 3

a0j 0 2 0 −1 −3

3. Perform a pivot at aij. (i.e., rewrite the equations into the appropriate
form for the new basic solution.)

(a) multiply pivot row i by 1/aij.

(b) add −(akj/aij)×(pivot row i) to each row k ̸= i, including the objective
function row.

In our example, the pivot row is the second row and the algebra is simple since
a21 = 1. We just need to subtract row 2 from the first and the last rows, after
which the tableau looks as at the right above.

The second row now corresponds to variable x1, which has replaced z2 in the
basis. This is the tableau for vertex B, where the basis is B = {1, 3}.
We repeat these instructions on the new tableau, with pivot a12, producing
the tableau for vertex C. The new second row is the old second row plus 1/3
of the first row.

x1 x2 z1 z2 ai0

z1 0 3 1 −1 3

x1 1 −1 0 1 3

a0j 0 2 0 −1 −3

−→
x1 x2 z1 z2 ai0

x2 0 1 1
3 −1

3 1

x1 1 0 1
3

2
3 4

a0j 0 0 −2
3 −1

3 −5

30

This is the tableau for vertex C, where the basis is B = {1, 2}, x1 = 4, x2 = 1,
and z1 = z2 = 0, with an objective function value of 5.

Note that the columns of the tableau corresponding to the basic variables
always comprise the columns of an identity matrix.

Since the bottom row is now all ≤ 0 the algorithm stops.
We have f = 5− 2

3z1− 1
3z2. Since z1, z2 ≥ 0, the maximum is where z1 = z2 = 0.

6.2 Choice of initial basic feasible solution

To run the algorithm we need to pick an initial b.f.s. In the example above we
started at vertex A where

x1 = x2 = 0; z1 = 6, z2 = 3.

Even for very large problems it is easy to pick a b.f.s. provided the original con-
straints are m constraints in n variables, Ax ≤ b with b ≥ 0. Once we add slack
variables Ax+ z = b we have n+m variables and m constraints. If we pick x = 0,
z = b this is a b.f.s. But if our problem involved a constraints like

∑
j a1jxj ≥ b1, we

cannot write
∑

j a1jxj−z1 = b1 = 10, say, and then take z1 = −10, since we require
z1 ≥ 0. The trick is to introduce another variable, writing

∑
j a1jxj − z1 + t1 = 10,

start with a b.f.s. in which t = 10, and then run a preliminary stage of the algorithm
that minimizes

∑
i ti to 0.

6.3 Choice of pivot column

We might have chosen the first pivot as a12 which would have resulted in

x1 x2 z1 z2 ai0

z1 1 2 1 0 6

z2 1 −1 0 1 3

a0j 1 1 0 0 0

−→

x1 x2 z1 z2 ai0

z1
1
2 1 1

2 0 3

x1
3
2 0 1

2 1 6

a0j
1
2 0 −1

2 0 −3

This is the tableau for vertex D. A further iteration, with pivot a21 takes us to the
optimal solution at vertex C. Therefore both choices of initial pivot column need
two iterations of the algorithm to reach the optimum.

31

Remarks.

1. At each stage of the simplex algorithm we have two things in mind.

(a) a particular choice of basis and basic solution.

(b) a rewriting of the problem in a convenient form.

2. In general, there is no way to tell in advance which choice of pivot column
will result in the smallest number of iterations. We may choose any column
where a0j > 0. A common rule-of-thumb is to choose the column for which
a0j is greatest, since the objective function increases by the greatest amount
per unit increase in the variable corresponding to that column. However, it is
known that for many rules, there exist examples on which the rule will perform
badly.

Suppose the simplex is a unit cube with 6 faces and 8 vertices. Starting from
(0, 0, 0) we might pivot 3 times to reach the optimum at (1, 1, 1). But we also
might take 7 steps, visiting all vertices on the way to the optimum.

In practice, the simplex algorithm seems to most times take a number of steps
that is linear in m and n. This has been proved for various probability models
in which A and b are randomly chosen.

3. The tableau obviously contains some redundant information. For example,
provided we keep track of which equation corresponds to a basic variable, we
could omit the columns corresponding to the identity matrix (and zeros in the
objective row). This is good for computer programs, but it is probably better
to keep the whole thing for hand calculation.

32

7 The Dual Linear Program

7.1 The dual problem for LP

To find the dual to problem P:

maximize c⊤x

subject to Ax ≤ b, x ≥ 0

equivalently Ax+ z = b, x, z ≥ 0.

we write the Lagrangian

L(x, z, λ) = c⊤x− λ⊤(Ax+ z − b) = (c⊤ − λ⊤A)x− λ⊤z + λ⊤b.

As in the general case, we consider the set Λ such that if λ ∈ Λ then
maxx,z≥0 L(x, z, λ) is finite, and for λ ∈ Λ we compute the minimum of L(λ).

Consider the linear term −λ⊤z. If any coordinate λi < 0 we can make −λizi as
large as we like, by taking zi large. So a finite maximum requires λi ≥ 0 for all i.

Similarly, considering the term (c⊤ − λ⊤A)x, this can be made as large as we
like unless (c⊤ − λ⊤A)i ≤ 0 for all i. Thus

Λ = {λ : λ ≥ 0, λ⊤A− c⊤ ≥ 0}.
If we pick a λ ∈ Λ then maxz≥0−λ⊤z = 0 (by choosing zi = 0 if λi > 0 and any zi
if λi = 0) and also maxx≥0(c⊤− λ⊤A)x = 0 similarly. Thus for λ ∈ Λ, L(λ) = λ⊤b.
So a pair of primal P, and dual D is,

P: maximize c⊤x s.t. Ax ≤ b, x ≥ 0

D: minimize λ⊤b s.t. λ⊤A ≥ c⊤, λ ≥ 0.

Notice that D is itself a linear program. For example,

P: maximize x1 + x2

subject to x1 + 2x2 ≤ 6

x1 − x2 ≤ 3

x1, x2 ≥ 0

D: minimize 6λ1 + 3λ2

subject to λ1 + λ2 ≥ 1

2λ1 − λ2 ≥ 1

λ1, λ2 ≥ 0

Furthermore, we might write D as

D: maximize (−b)⊤λ s.t. (−A)⊤λ ≤ (−c), λ ≥ 0.

So D is of the same form as P, but with c → −b, b → −c, and A → −A⊤. This
shows that the dual of D is P, and so we have proved the following lemma.

Lemma 7.1. In linear programming, the dual of the dual is the primal.

33

7.2 The weak duality theorem in the case of LP

Theorem 4.3 applied directly to P and D gives the following.

Theorem 7.2 (weak duality theorem for LP). If x is feasible for P (so Ax ≤ b,
x ≥ 0) and λ is feasible for D (so λ ≥ 0, A⊤λ ≥ c) then c⊤x ≤ λ⊤b.

It is worth knowing a proof for this particular case which does not appeal to the
general Theorem 4.3. Naturally enough, the proof is very similar.

Proof. Write

L(x, z, λ) = c⊤x− λ⊤(Ax+ z − b)

where Ax+z = b, z ≥ 0. Now for x and λ satisfying the conditions of the theorem,

c⊤x = L(x, z, λ) = (c⊤ − λ⊤A)x− λ⊤z + λ⊤b ≤ λ⊤b.

7.3 Sufficient conditions for optimality

Theorem 7.2 provides sufficient conditions for optimality of x∗, z∗, λ∗ in P and D.

Theorem 7.3 (sufficient conditions for optimality in LP). If x∗, z∗ is feasible
for P and λ∗ is feasible for D and (c⊤ − λ∗⊤A)x∗ = λ∗⊤z∗ = 0 (complementary
slackness) then x∗ and λ∗ are optimal for P and D. Furthermore c⊤x∗ = λ∗⊤b.

Proof. Write L(x∗, z∗, λ∗) = c⊤x∗ − λ∗⊤(Ax∗ + z∗ − b). Now

c⊤x∗ = L(x∗, z∗, λ∗)

= (c⊤ − λ∗⊤A)x∗ − λ∗⊤z∗ + λ∗⊤b

= λ∗⊤b

But for all x feasible for P we have c⊤x ≤ λ∗⊤b (by Theorem 7.2) and this implies
that for all feasible x, c⊤x ≤ c⊤x∗. So x∗ is optimal for P. Similarly, λ∗ is optimal
for D (and the problems have the same optimums).

Theorem 7.4 (strong duality in LP). If both P and D are feasible (each has
at least one feasible solution), then there exists x, λ satisfying the conditions of
Theorem 7.3 above.

This is because both P and D can be solved by Lagrangian methods.

34

7.4 The utility of primal-dual theory

Why do we care about D instead of just getting on with the solution of P?

1. D might be easier to solve than P (and they have the same optimal values).

2. For some problems it is natural to consider both P and D together (e.g., two
person zero-sum games, see Lecture 9).

3. Theorem 7.3 says that for optimality we need three things: primal feasibility,
dual feasibility and complementary slackness.

Some algorithms start with solutions that are primal feasible and work towards
dual feasibility. Others start with dual feasibility. Yet others alternately look
at the primal and dual variables and move towards feasibility for both at once.

7.5 Primal-dual relationships

Look at problem D which, after introducing slack variables v1 and v2, is written as

D: minimize 6λ1 + 3λ2

subject to λ1 + λ2 − v1 = 1

2λ1 − λ2 − v2 = 1

λ1, λ2, v1, v2 ≥ 0
A

B
C

D

E

F

λ2

λ1

λ1 = 0

λ2 = 0

v1 = 0

v2 = 0

The value of the variables, etc., at the points A–F in P (as above) and D are:

P:

x1 x2 z1 z2 f

A 0 0 6 3 0

B 3 0 3 0 3

C 4 1 0 0 5

D 0 3 0 6 3

E 6 0 0 −3 6

F 0 −3 12 0 −3

D:

v1 v2 λ1 λ2 f

A −1 −1 0 0 0

B 0 −2 0 1 3

C 0 0 2
3

1
3 5

D −1
2 0 1

2 0 3

E 0 1 1 0 6

F −2 0 0 −1 −3

35

Observe, that for D, as for P above, there are two zero and two non-zero variables
at each intersection (basic solution). C and E are feasible for D. The optimum
is at C with optimum value 5 (assuming we are minimizing and the other basic
solutions are not feasible.)

We observe the following by comparing lists of basic solutions for P and D.

1. For each basic solution for P there is a corresponding basic solution for D.
[Labels A–F have been chosen so that corresponding solutions have the same
labels.] Each pair

(a) has the same value of the objective function.

(b) satisfies complementary slackness, i.e., xivi = 0, λizi = 0,

so for each corresponding pair,

P D

variables x constraints

xi basic (xi ̸= 0) ⇐⇒ constraint: tight (vi = 0)

xi non-basic (xi = 0) ⇐⇒ constraint: slack (vi ̸= 0)

constraints variables λ

constraint: tight (zi = 0) ⇐⇒ λi basic (λi ̸= 0)

constraint: slack (zi ̸= 0) ⇐⇒ λi non-basic (λi = 0)

(These conditions determine which basic solutions in P and D are paired;
the implications go both ways because in this example all basic solutions are
non-degenerate.)

2. There is only one pair that is feasible for both P and D, and that solution is
C, which is optimal, with value 5, for both.

3. For any x feasible for P and λ feasible for D we have c⊤x ≤ b⊤λ with equality
if and only if x, λ are optima for P and D.

4. P and D are related thus:

� P has a finite optimum =⇒ D has a finite optimum

� P feasible =⇒ D is bounded.

� P is infeasible =⇒ D is infeasible or unbounded.

36

8 Shadow prices

8.1 Dual problem and the final tableau

Recall the final tableau in our example, of the form Ax+ z = b,

x1 x2 z1 z2 ai0

0 1 1
3 −1

3 1

1 0 1
3

2
3 4

0 0 −2
3 −1

3 −5

Notice that in the bottom row of the tableau we have in the z1 and z2 columns
−2

3 and −1
3 , which are the values of −λ1 and −λ2 in the optimal solution to the

dual. The explanation is that once we have been through the simplex algorithm
iterations, we have effectively subtracted some multiples of the rows 1, . . . ,m from
the last row. Suppose we have subtracted λi times row i. The final row looks like

(c⊤NxN c⊤BxB | f)− λ⊤(ANxN ABxB | b)

which expresses the equation

(cN − λ⊤AN)xN + (c⊤B − λ⊤AB)xB = f − λ⊤b

Since our initial solution was x = 0, z = b, AB = I, AN = A, c⊤B = 0 this can be
read as

(c⊤ − λ⊤A)x− λ⊤z = f − λ⊤b.

We stop when coefficients of x and z are all non-positive. That is λ ≥ 0 and
λ⊤A ≥ c⊤. These are precisely the conditions for λ to be feasible for the dual. It
is optimal for the dual because λ⊤b takes the same value as the maximum of c⊤x.

8.2 Shadow prices and sensitivity analysis

As we have seen, each row of each tableau merely consists of sums of multiples
of rows of the original tableau. Objective last row = original last row + scalar
multiples of other rows.

Consider the initial and final tableau for problem P.

initial

1 2 1 0 6

1 −1 0 1 3

1 1 0 0 0

final

0 1 1
3 −1

3 1

1 0 1
3

2
3 4

0 0 −2
3 −1

3 −5

37

Look at the columns 3 and 4, corresponding to variables z1 and z2. Note that

Final row (1) = 1
3 initial row (1) −1

3 initial row (2)

Final row (2) = 1
3 initial row (1) +2

3 initial row (2)

Final objective row = initial objective row −2
3 initial row (1) −1

3 initial row (2).
Suppose we want to make a small change in b, so we replace(
6

3

)
by

(
6 + ϵ1

3 + ϵ2

)
. Solve for a solution with the same basis the tableau we find

0 1 1
3 −1

3 1 + 1
3ϵ1 − 1

3ϵ2

1 0 1
3

2
3 4 + 1

3ϵ1 +
2
3ϵ2

0 0 −2
3 −1

3 −5− 2
3ϵ1 − 1

3ϵ2

with corresponding solution x1 = 4 + 1
3ϵ1 − 1

3ϵ2 and x2 = 1 + 1
3ϵ1 +

2
3ϵ2 and

objective function value 5 + 2
3ϵ1 +

1
3ϵ2. If ϵ1, ϵ2 are such that we have x1 < 0 or

x2 < 0 then vertex C is no longer optimal. But if ϵ1, ϵ2 are small then x1, x2 are
still positive and the optimal solution still has the same basis.

The bottom row of the final tableau shows the sensitivity of the optimal so-
lution to changes in b and how the optimum value varies with small changes in
b. The values lieing at the bottoms of columns 3 and 4 are −λ1,−λ2. Again, La-
grange multipliers are shadow prices. We would be willing to a pay price of 2

3ϵ1
for relaxation of the right hand side of the first constraint from 6 to 6 + ϵ1.

Notice also that being able to see how the final tableau is related to the initial
one without looking at the intermediate steps provides a useful way of checking
your arithmetic if you suspect you have got something wrong!

Notice that for problem P the objective rows at the vertices A, B, C and D are:

A 1 1 0 0 0

B 0 2 0 −1 −3
C 0 0 −2

3 −1
3 −5

D 1
2 0 −1

2 0 −3

Compare these values with the basic solutions of the dual problem (on page 35).
You will see that the objective row of the simplex tableau corresponding to each
b.f.s. of problem P contains the values of the variables for a complementary slack
basic solution to problem D (after a sign change).

The simplex algorithm can (and should) be viewed as searching amongst basic
feasible solutions of P, for a complementary-slack basic solution of D which is also

38

feasible. At the optimum of P the shadow prices (which we can read off in the
bottom row) are also the dual variables for the optimal solution of D.

8.3 Shadow prices and the diet problem

Lagrangian multipliers, dual variables and shadow prices are the same things.
Let us say a bit more about the latter in the context of the diet problem.

Suppose you require an amounts b1, . . . , bm of m different vitamins. There are n
foodstuffs available. Let

aij = amounts of vitamin i in one unit of foodstuff j,

and suppose foodstuff j costs cj per unit. Your problem is therefore to choose the
amount xj of foodstuff j you buy to solve the LP

minimize
∑
j

cjxj

subject to
∑
j

aijxj ≥ bi, each i

and xj ≥ 0 each j.

Now suppose that a vitamin company decides to marketm different vitamin pills
(one for each vitamin) and sell them at price pi per unit for vitamin i. Assuming
you are prepared to switch entirely to a diet of vitamin pills, but that you are not
prepared to pay more for an artificial carrot (vitamin equivalent) than a real one,
the company has to maximize profit by choosing prices pi to

max
∑
i

bipi

subject to
∑
i

aijpi ≤ cj, each j

and pi ≥ 0 each i.

Note that this is the LP which is dual to your problem. The dual variable pi is the
price you are prepared to pay for a unit of vitamin i and is called a shadow price.
By extension, dual variables are sometimes called shadow prices in problems where
their interpretation as prices is very hard (or impossible) to see.

The dual variables tell us how the optimum value of our problem changes with
changes in the right-hand side (b) of our functional constraints. This makes sense
in the example given above. If you require an amount bi + ϵ of vitamin i instead
of an amount bi you would expect the total cost of your foodstuff to change by an

39

amount ϵpi, where pi is the value to you of a unit of vitamin i, even though in your
problem you cannot buy vitamin i separately from the others.

The above makes clear the relationship between dual variables/Langrange mul-
tipliers and shadow prices in the case of linear programming.

More generally, in linear problems we can use what we know about the optimal
solutions to see how this works. Let us assume the primal problem

P (b) : minimize c⊤x s.t. Ax− z = b, x, z ≥ 0.

has the optimal solution ϕ(b), depending on b. Consider two close together values
of b, say b′ and b′′, and suppose that optimal solutions have the same basic variables
(so optimums occur with the same variables being non-zero, though the values of
the variables will change slightly). The optimum still occurs at the same vertex of
the feasible region though it moves slightly. Now consider the dual problem:

maximizeλ⊤b s.t. A⊤λ ≤ c, λ ≥ 0.

In the dual problem the feasible set does not depend on b, so the optimum of
the dual will occur with the same basic variables and the same values of the dual
variables λ. But the value of the optimum dual objective function is λ⊤b′ in one
case and λ⊤b′′ in the other and we have seen that the primal and dual have the
same solutions. Hence

ϕ(b′) = λ⊤b′ and ϕ(b′′) = λ⊤b′′

and the values of the dual variables λ give the rate of change of the objective value
with b. The change is linear in this case.

We saw in Section 4.3 that the same idea works in nonlinear problems.

40

9 Two Person Zero-Sum Games

9.1 Games with a saddle-point

A zero-sum game is one which what one player wins what the other loses. The
players make moves simultaneously. Each has a choice of moves (not necessarily
the same). If player I makes move i and player II makes move j then player I wins
(and player II loses) aij. Both players know the m×n pay-off matrix A = (aij).

II plays j

1 2 3 4

1 −5 3 1 20

I plays i 2 5 5 4 6 ← (aij)

3 −4 6 0 −5

What is the best that player I can do if player II plays move j?

II’s move: j = 1 2 3 4

I’s best response: i = 2 3 2 1

I wins 5 6 4 20 ← column maximums

Similarly, what is the best that player II can do if I plays move i?

I’s move: i = 1 2 3

II’s best response: j = 1 3 4

I wins −5 4 −5 ← row minimums

Here the minimal column maximum = minj maxi aij = maximinj aij = maximal

row minimum = 4, when player I plays 2 and player II plays 3. In this case we say
that A has a saddle-point (2, 3) and the game is solved.

Definition 9.1. A saddle point of a payoff matrix A is a pair of strategies (i∗, j∗)
such that

ai∗j∗ = min
j

max
i

aij = max
i

min
j

aij

41

Remarks. The game is solved by ‘I plays 2’ and ‘II plays 3’ in the sense that

1. Each player maximizes his minimum gain.

2. If either player announces any strategy (in advance) other than ‘I plays 2’ and
‘II plays 3’, he will do worse.

3. If either player announces that he will play the saddle-point move in advance,
the other player cannot improve on the saddle-point.

9.2 Example: Two-finger Morra, a game without a saddle-point

Morra is a game dating from Roman and Greek times. Each player displays either
one or two fingers and simultaneously guesses how many fingers his opponent will
show. If both players guess correctly or both guess incorrectly then the game is a
tie. If only one player guesses correctly, then that player wins from the other player
an amount equal to the total number of fingers shown. A strategy for a player is
(a, b) =‘show a, guess b’. The pay-off matrix is

(1,1) (1,2) (2,1) (2,2)

(1,1) 0 2 −3 0

(1,2) −2 0 0 3

(2,1) 3 0 0 −4
(2,2) 0 −3 4 0

= (aij)

Column maximums are all positive and row minimums are all negative. So there
is no saddle point (even though the game is symmetric and fair). If either player
announces a fixed strategy (in advance), the other player will win.

We must look for a solution to the game in terms of mixed strategies.

9.3 Determination of an optimal strategy

Each player must use a mixed strategy. Player I plays move i with probability pi,
i = 1, . . . ,m and player II plays moves j with probability qj, j = 1, . . . , n. Player
I’s expected payoff if player II plays move j is∑

i

piaij.

42

So player I attempts to

maximize

{
min
j

∑
i

piaij

}
s.t.

∑
i

pi = 1, pi ≥ 0.

Note that this is equivalent to

P: maximize v s.t.
∑
i

aijpi ≥ v, each j, and
∑
i

pi = 1, pi ≥ 0,

since v on being maximized will increase until it equals the minimum of the
∑

i aijpi.
By similar arguments, player II’s problem is

D: minimize v s.t.
∑
j

aijqj ≤ v, each i, and
∑
j

qj = 1, qj ≥ 0.

In fact, P and D are a pair of dual linear programs (as can be shown by the standard
technique of finding the dual of P). Consequently, the general theory gives sufficient
conditions for strategies p and q to be optimal.

Let e denote a vector of 1s, the number of components determined by context.

Theorem 9.1. Suppose p ∈ Rm, q ∈ Rn, and v ∈ R, such that

(a) p ≥ 0, e⊤p = 1, p⊤A ≥ ve⊤ (primal feasibility);

(b) q ≥ 0, e⊤q = 1, Aq ≤ ve (dual feasibility);

(c) v = p⊤Aq (complementary slackness).

Then p is optimal for P and q is optimal for D with common optimum (the value
of the game) v.

Proof. The fact that p and q are optimal solutions to linear programs P and D
follows from Theorem 7.3. Alternatively, note that Player I can guarantee to get
at least

min
q

p⊤Aq ≥ min
q
(ve⊤)q = v,

and Player II can guarantee that Player I gets no more than

max
p

p⊤Aq ≤ max
p

p⊤(ve) = w = v.

In fact, (c) is redundant; it is implied by (a) and (b).

43

Remarks.

1. Notice that this gives the right answer for a game with a saddle-point (i∗, j∗),
(i.e., v = ai∗j∗, with pi∗ = qj∗ = 1 and other pi, qj = 0).

2. Two-finger Morra has an optimal solution p = q = (0, 35 ,
2
5 , 0), v = 0, as can be

easily checked. E.g. p⊤A = (0, 0, 0, 1/5) ≥ 0×e⊤. It is obvious that we expect
to have p = q and v = 0 since the game is symmetric between the players
(A = −A⊤). A is called an anti-symmetric matrix.

The optimal strategy is not unique. Another optimal solution is p = q =
(0, 47 ,

3
7 , 0). Player I can play any mixed strategy of the form (0, θ, 1 − θ, 0)

provided 4
7 ≤ θ ≤ 3

5 .

3. These conditions allow us to check optimality. For small problems one can
often use them to find the optimal strategies, but for larger problems it will be
best to use some other technique to find the optimum (e.g., simplex algorithm).
Note, however, that the problems P and D are not in a form where we can
apply the simplex algorithm directly;v does not have a positivity constraint.
Also the constraints are

∑
i aijpi−v = 0 with r.h.s.= 0. It is possible, however,

to transform the problem into a form amenable to the simplex algorithm.

(a) Add a constant k to each aij so that aij > 0 each i, j. This doesn’t change
anything, except the value of the game which is now guaranteed to be
positive (v > 0).

(b) Change variables to xi = pi/v. We now have that P is

maximize v s.t.
∑
i

aijxi ≥ 1,
∑
i

xi = 1/v, xi ≥ 0,

which is equivalent to

minimize
∑
i

xi s.t.
∑
i

aijxi ≥ 1, xi ≥ 0

and this is the type of LP that we are used to.

44

9.4 Example: Colonel Blotto

Colonel Blotto has three regiments and his enemy has two regiments. Both com-
manders are to divide their regiments between two posts. At each post the com-
mander with the greater number of regiments wins one for each conquered regiment,
plus one for the post. If the commanders allocate equal numbers of regiments to a
post there is a stand-off. This gives the pay-off matrix

Colonel

Blotto

Enemy commander

(2,0) (1,1) (0,2)

(3,0) 3 1 0

(2,1) 1 2 −1
(1,2) −1 2 1

(0,3) 0 1 3

Clearly it is optimal for Colonel Blotto to divide his regiments (i, j) and (j, i) with
equal probability. So the game reduces to one with the payoff matrix

(2,0) (1,1) (0,2)

(3,0) or (0,3) 3
2 1 3

2

(2,1) or (1,2) 0 2 0

To derive the optimal solution we can

(a) look at player Colonel Blotto’s original problem: maximize {minj
∑

i piaij},
i.e., maximizepmin{32p, p+ 2(1− p)}, easily solved by a graph.

(b) attempt to derive p, q, v from the conditions of Theorem 9.1, or

(c) convert the problem as explained above and use the simplex method.

For this game, p = (45 ,
1
5), q = (15 ,

3
5 ,

1
5) and v = 6

5 is optimal. In the original
problem, this means that Colonel Blotto should distribute his regiments as (3,0),
(2,1), (1,2), (0,3) with probabilities 2

5 ,
1
10 ,

1
10 ,

2
5 respectively, and his enemy should

distribute hers as (2,0), (1,1), (0,2) with probabilities 1
5 ,

3
5 ,

1
5 respectively.

45

9.5 Example: Enforcer-evader game

A smuggler wishes to traverse a path in a network from s to t. The enforcer
can set up an inspection point on any one arc. If he inspects on arc i and the
smuggler’s path uses that arc, then the smuggler is caught with probability αi. The
enforcer/smuggler wish to maximize/minimize the probability of capture. Both will
need to use randomized strategies. Suppose the optimal strategy of the smuggler
ends up using arc i with probability xi. He will be seeking to minimize v subject to
αixi ≤ v for all i, equivalently xi ≤ v/αi. Additionally the xis must be consistent
with flows along paths; i.e. the total flow of probability into and out of each node
must be equal (except at s and t). This recasts the problem as a network flow
problem in which arcs have capacities v/αi and the aim is to reduce v to the point
where passing 1 unit of flow through the nextwork from s to t is just feasible.
The maximum flow can be found using the Ford-Fulkerson algorithm (Lecture 10).
Consider the example shown. The min-cut is as shown by the dotted line.

s

t

1

2

1/2

1/2

1/2 1/3

1/4

s

t

1

2

2v

2v

2v 3v

4v

The maximum flow is 5v, achieved by 2v, v and 2v along paths s−1−t, s−1−2−t
and s − 2 − t respectively. Hence the solution is v = 1/5. The smuggler choses
paths s− 1− t, s− 1− 2− t, s− 2− t with probabilities 2/5, 1/5, 2/5, respectively,
and the enforcer inspects arcs 1− t, 2− t with probabilities 3/5, 2/5 respectively.
The smuggler could alternatively choose paths s−1− t, s−1−2− t, s−2− t with
probabilities 2/5, 2/5, 1/5. This also puts flow of 2/5 on 1− t and 3/5 on 2− t.

46

9.6 Example: Hider-searcher game

Player I, the hider, wishes to hide an object in one of n locations so that Player II,
the searcher, has the greatest expected cost to find it. To search location i costs
ci. If the searcher searches locations in order 1, 2, . . . , n and the object has been
hidden in j then his cost is c1 + · · · + cj. In the case n = 3 this leads to a game
with matrix A⊤

1 2 3

123 c1 c1 + c2 c1 + c2 + c3

132 c1 c1 + c2 + c3 c1 + c3

213 c1 + c2 c2 c1 + c2 + c3

231 c1 + c2 + c3 c2 c2 + c3

312 c1 + c3 c1 + c2 + c3 c3

321 c1 + c2 + c3 c2 + c3 c3

The optimal strategies are that II hides the object in location i with probability
proportional to ci and I searches in order i, j, k with probability ci/2. The value of
the game is v = (c1 + c2 + c3)

2− (c1c2 + c2c3 + c3c1). These facts can be verified by
showing the (c1, c2, c3)A = v1⊤, and (1/2)(c1, c1, c2, c2, c3, c3)A

⊤ = v1⊤.
In general, if I is hiding k objects he should hide them in locations i1, . . . , ik

with a probability proportional to ci1 · · · cik. Player II should, with a probability
proportional to ci, search first in i and thereafter search other locations in random
order.

47

10 Maximal Flow in a Network

10.1 Max-flow/min-cut theory

Consider a network consisting of n nodes labeled 1, . . . , n and directed edges be-
tween them with capacities cij on the arc from node i to node j. Let xij denote
the flow in the arc i→ j, where 0 ≤ xij ≤ cij.

v v
1 n

Problem: Find maximal flow from node 1 (the source) to node n (the sink)
subject to the conservation of flow at nodes, i.e.,

maximize v s.t. 0 ≤ xij ≤ cij, for all i, j

and

flow out of

node i
− flow into

node i
=
∑
j∈N

xij −
∑
j∈N

xji =


v if i = 1

0 if i = 2, . . . , n− 1

−v if i = n

where the summations are understood to be over existing arcs only. v is known as
the value of the flow.

This is obviously an LP problem, with lots of variables and constraints. We can
solve it more quickly (taking advantage of the special network structure) as follows.

Definition 10.1. A cut (S, S̄) is a partition of the nodes into two disjoint subsets
S and S̄ with 1 ∈ S and n ∈ S̄.

Definition 10.2. The capacity of a cut

C(S, S̄) =
∑

i∈S,j∈S̄
cij.

Thus given a cut (S, S̄) the capacity of the cut is the maximal flow from nodes
in S to nodes in S̄. It is intuitively clear that any flow from node 1 to node n must
cross the cut (S, S̄), since in getting from 1 to n at some stage it must cross from
S to S̄. This holds for any flow and any cut.

48

Example 10.1.

1 3

2

11

1

1

3

3

4

Cut S = {1, 3}, S̄ = {2, 4}, C(S, S̄) = 3. Check that the maximal flow is 3.

In fact, we have:

Theorem 10.1 (Max flow/min cut Theorem). The maximal flow value through the
network is equal to the minimal cut capacity.

Proof. Summing the feasibility constraint

∑
j∈N

xij −
∑
j∈N

xji =


v if i = 1

0 if i = 2, . . . , n− 1

−v if i = n

over i ∈ S, yields

v =
∑

i∈S,j∈N
xij −

∑
j∈N,i∈S

xji

=
∑

i∈S,j∈S̄
xij −

∑
j∈S̄,i∈S

xji

≤ C(S, S̄)

since for all i, j we have 0 ≤ xij ≤ cij. Hence the value of any feasible flow is less
than or equal to the capacity of any cut.

So any flow ≤ any cut capacity, (and in particular max flow ≤ min cut).

Now let f be a maximal flow, and define S ⊆ N recursively as follows:

(1) 1 ∈ S.

(2) If i ∈ S and xij < cij, then j ∈ S.

(3) If i ∈ S and xji > 0, then j ∈ S.

Keep applying (2) and (3) until no more can be added to S.

49

So S is the set of nodes to which we can increase flow. Now if n ∈ S we
can increase flow along a path in S and f is not maximal. Thus when we stop,
n ∈ S̄ = N \S and (S, S̄) is a cut. From the definition of S we know that for i ∈ S
and j ∈ S̄, xij = cij and xji = 0, so in the formula above we get

v =
∑

i∈S,j∈S̄
xij −

∑
j∈S̄,i∈S

xji = C(S, S̄).

So max flow = min cut capacity.

Corollary 10.2. If a flow value v = cut capacity C then v is maximal and C
minimal.

The proof suggests an algorithm for finding the maximal flow.

10.2 Ford-Fulkerson algorithm

1. Start with a feasible flow (e.g., xij = 0).

2. Construct S recursively by the algorithm defined in the box above.

3. If n ∈ S then there is a path from 1 to n along which we can increase flow by

ϵ = min
(ij)

max[xji, cij − xij] > 0.

where the minimum is taken with respect to all arcs i→ j on the path.

Replace the flow by this increased flow. Return to 2.

If n ̸∈ S then the flow is optimal.

The algorithm is crude and simple; we just push flow through where we can, until
we can’t do so anymore. There is no guarantee that it will be very efficient. With
hand examples it is usually easy to ‘see’ the maximal flow. You just demonstrate
that it is maximal by giving a cut with the same capacity as the flow and appeal
to the min cut = max flow theorem.

The algorithm can be made not to converge if the capacities are not rational
multiples of one another. However,

Theorem 10.3. If capacities and initial flows are rational then the algorithm ter-
minates at a maximal flow in a finite number of steps. (Capacities are assumed to
be finite.)

Proof. Multiply by a constant so that all capacities and initial flows are integers.
The algorithm increases flow by at least 1 on each step.

50

If capacities are not rational then the algorithm is not guaranteed to stop.

a

b

c

d

e

f

0

0

0
0

0

0

0

0
1

1

1

1

ww
w

w

ww

w2 w2

+w

+w

Figure 3: Example: Failure to stop when capacities and initial flows are not rational.

The network in Figure 3 consists of a square b c d e of directed arcs of capacity
1. The corners of the square are connected to a source at a and a sink at f by
arcs of capacity 10. The initial flow of 1 + w is shown in the first picture, where
w = (

√
5− 1)/2, so 1− w = w2. The first iteration is to increase flow by w along

a→ c→ b→ e→ d→ f . The second increases it by w along a→ d→ e→ b→ f .
The flow has increased by 2w and the resulting flow in the square is the same as
at the start, but multiplied by w and rotated by 180o. The algorithm can continue
in this manner forever without stopping and never reach the optimal flow of 40.

10.3 Hall’s matching theorem

The max-flow min-cut theorem has many applications. Here is one.

Consider a bipartite graph whose vertices are in two sets L (for left) and R (for
right), and E ⊆ L × R. Suppose |L| = |R| = n. The bipartite graph is said to
have a perfect matching if by using a subset of n edges from E, pairs of i ∈ L

and j ∈ R can be matched as the endpoints of these edges. For i ∈ L. define
N(i) = {j : (i, j) ∈ E} and for X ⊆ L, N(X) = ∪i∈XN(i).

Theorem 10.4 (Hall’s theorem). Consider a bipartite graph G = (L ∪ R,E) with
|L| = |R|. It has a perfect matching if and only if |N(X)| ≥ |X| for every X ⊆ L.

Proof. If a perfect matching exists then clearly |N(X)| ≥ |X| for any X ⊆ L.

To prove the converse we add a ‘start’ s, and a ‘terminus’ t, and all edges of
form (s, i), i ∈ L, and (j, t), j ∈ R. Let the original edges in E have capacity ∞
and the new edges capacity 1. Find (S, V \ S), the cut of minimum capacity.

By by use of the assumption with X = L∩S we have |N(L∩S)| ≥ |L∩S|. But
R ∩ S = N(L ∩ S). So

C(S) = |L ∩ S̄|+ |R ∩ S| ≥ |L ∩ S̄|+ |L ∩ S| = |L|.

51

11 Minimum Cost Circulation Problems

11.1 Minimal cost circulations

The problem of maximizing flow in a network is a special case of theminimum cost
circulation problem. A network is a closed network if there is no flow into or
out of the network. A flow in a closed network is a circulation if

∑
j xij−

∑
j xji =

0 for each node i. Consider the problem

minimize
∑
ij

dijxij

subject to
∑
j

xij −
∑
j

xji = 0, each i, and c−ij ≤ xij ≤ c+ij.

That is, we are to minimize cost when on each arc (i, j) there is cost per unit flow
of dij and capacity constraint c−ij ≤ xij ≤ c+ij. A circulation which satisfies the
capacity constraints is called a feasible circulation.4

The maximal flow problem of Lecture 10 can be cast as a minimal cost circulation
problem. For each arc we assign a capacity constraint 0 ≤ xij ≤ c+ij and all cost
dij = 0. Add an arc from node n to 1 with no capacity constraint and cost −1.

1 n

cost −1

vv

S S̄

Minimizing the cost of the circulation, −v, is the same as maximizing v.

11.2 Sufficient conditions for a minimal cost circulation

Consider the Lagrangian for the minimum cost circulation problem. We shall treat
the capacity constraints as the region constraints, so

X = {xij : c−ij ≤ xij ≤ c+ij}.
4There is a beautiful algorithm called the out-of-kilter algorithm which will solve general problems of this kind.

It does not even require a feasible solution with which to start.

52

We introduce Lagrange multipliers λi (one for each node) and write

L(x, λ) =
∑
ij

dijxij +
∑
i

λi

(
0−

∑
j

xij +
∑
j

xji

)

Rearranging we obtain

L(x, λ) =
∑
ij

(dij − λi + λj)xij.

We attempt to minimize L(x, λ) in X. At the minimum the following must hold:

xij =

{
c−ij if dij − λi + λj > 0

c+ij if dij − λi + λj < 0
(1)

c−ij ≤ xij ≤ c+ij if dij − λi + λj = 0. (2)

Note that (1) and (2) imply that if c−ij < xij < c+ij then we must have dij−λi+λj = 0.

Theorem 11.1. If (xij) is a feasible circulation and there exists λ such that (xij), λ
satisfy conditions (1) and (2) above, then (xij) is a minimal cost circulation.

Proof. This follows from the Lagrangian sufficiency theorem.

We know that linear programs can be solved by Lagrangian methods, so provided
a finite minimum exists, there will indeed exist xij, λi satisfying (1) and (2).

The Lagrange multipliers λi are known as node numbers or potentials. The
difference λi − λj is known as the tension in the arc (i, j).

Specialized to the maximum flow problem, the solution has the character that
λn = 0, λ1 = 1, λi = 1 for i ∈ S and λi = 0 for i ∈ S̄.

11.3 The transportation problem

Another important minimum cost flow problem is the transportation problem.
Consider a supplier who has n supply depots from which goods must be shipped
to m destinations. We assume there are quantities s1, . . . , sn of the goods at de-
pots {S1, . . . , Sn} and that the demands at destinations {D1, . . . , Dm} are given
by d1, . . . , dm. We also assume that

∑
i si =

∑
j dj so that total supply = total

demand. Any amount of goods may be taken directly from source i to destination
j at a cost of dij (i = 1, . . . , n; j = 1, . . . ,m) per unit. One formulation of the

53

problem is

minimize
∑
ij

dijxij

subject to
∑
j

xij = si each i,
∑
i

xij = dj each j

with xij ≥ 0 each i, j.

Here xij is the flow from Si to Dj. The network looks like:

s1

s2

sn

d1

d2

dm

n sources m destinations

with arcs (i, j), 0 ≤ xij <∞, and cost dij per unit flow.
If we augment the transportation network by connecting all sources and all

destinations to a common ‘artificial node’ by arcs where the flow is constrained to
be exactly that which is required (and zero cost) we obtain the same problem as
in minimal cost circulation form.

cost dij

0 ≤ xij < ∞

cost d0i = 0 cost dj0 = 0

arcs si ≤ x0i ≤ si arcs dj ≤ xj0 ≤ dj

0

The Lagrangian for the problem can be written

L(x, λ, µ) =
∑
ij

dijxij +
∑
i

λi

(
si −

∑
j

xij

)
+
∑
j

µj

(
dj −

∑
i

xij

)
,

54

where we label Lagrange multipliers (node numbers) λi for sources and µj for
destinations. Rearranging,

L(x, λ, µ) =
∑
ij

(dij − λi − µj)xij +
∑
i

λisi +
∑
j

µjdj.

There is a finite minimum for xij ≥ 0 if dij − λi − µj ≥ 0, for all i, j, and which
occurs with complementary slackness of (dij − λi − µj)xij = 0 on each arc.

Theorem 11.2. A flow xij is optimal for the transportation problem if there exists
λi, µj such that dij ≥ λi + µj each (i, j) and (dij − λi − µj)xij = 0.

Proof. This follows from the Lagrangian sufficiency theorem.

We noted above that the transportation problem is an example of a minimum
cost circulation problem. In fact the reverse is also true: it can be shown that
any minimum cost circulation problem can be reformulated as a transportation
problem. This is one reason why transportation problems have been a focus of
much theoretical research.

11.4 Example: optimal power generation and distribution

In Lecture 12 we learn an algorithm for solving the transportation problem. The
idea is to compute node numbers using the fact that we wish cij = λi+µj wherever
xij > 0. Then we examine places where xij = 0. If at any such place dual feasibility
is violated, because cij < λi+µj, then we can move to a better basic feasible solution
by increasing the value of such xij.

The following real-life problem can be solved by the ‘simplex-on-a-graph algo-
rithm’, which is similar to the transportation algorithm of the Lecture 12, and
briefly described in Section 12.3. Demand for electricity at node i is di. Node i has
ki generators, that can generate electricity at costs of ai1, . . . , aiki, up to amounts
bi1, . . . , biki. There are n = 12 nodes and 351 generators. Transmission capacity
from node i to j is cij (= cji).

Let xij = amount of electricity carried i→ j and let yij = amount of electricity
generated by generator j at node i. The LP is

minimize
∑
ij

aijyij

subject to
∑
j

yij −
∑
j

xij +
∑
j

xji = di, i = 1, . . . , 12,

0 ≤ xij ≤ cij, 0 ≤ yij ≤ bij.

In addition, there are constraints on the maximum amount of power that may
be shipped across the cuts shown by the dotted lines in the diagram.

55

1

11

2

3 4

5

67

8

9

10

12

Yorkshire

Wales

London

Scotland

Cumbria Northeast

Northwest

Central

Southwest

Southcoast Thames

Midlands

56

12 Transportation and Assignment Problems

12.1 The transportation algorithm

The transportation algorithm is based on the sufficient conditions for optimality
in Theorem 11.2. At all steps primal feasibility is maintained, a complementary
slack solution to the dual is calculated, and then this is checked for dual feasibility.

1. Set out the supplies and costs in a table, as at the left below

D1 D2 D3 D4

S1
5 3 4 6

8

S2
2 7 4 1

10

S3
5 6 2 4

9

6 5 8 8

6
5

2
3 4 6

8

2
3

7
7

4 1
10

5 6
1

2
8

4
9

6 5 8 8

2. Allocate an initial feasible flow (by North-West corner rule or any other sensible
method). NW corner rule says start at top left corner and dispose of supplies and
fulfill demands in order i, j increasing. In our case we get as at the right above.

In the absence of degeneracy (which we assume) there are not less than (m+n−1)
non-zero entries, which appear in a ‘stair-case’ arrangement.

Remark. In our network picture we have constructed a feasible flow on a spanning
tree of m+ n− 1 arcs connecting n sources and m destinations.

1

2

2

2

3

6

7

8

0

0

4

5

3

A set of undirected arcs is spanning if it connects all nodes. It is a tree if it
contains no circuits. A spanning tree is the equivalent of a basic feasible solution
for this problem.

57

3. For optimality we require dij = λi+µj on any arc with strictly positive flow. Set
λ1 = 0 (arbitrarily) and then compute the remaining λi, µj by using dij = λi+µj = 0
on arcs for which xij > 0. On the table we have

λi \ µj 5 3 0 2

0 6
5

2
3 4 6

4
2

3
7

7
4 1

2
5 6

1
2

8
4

The node numbers are also shown on the network version above. With non-zero
flows forming a spanning tree we can always compute uniquely all node numbers
given one of them, such as λ1 = 0. Notice that it is only λi + µj that matters so
we could subtract some constant from all λi and add the same constant to all µj

and that would do as well. That is why we can arbitrarily take λ1 = 0.

4. We now compute λi + µj for all the remaining boxes (arcs) and write these
elsewhere in the boxes. E.g.,

λi \ µj 5 3 0 2

0 6
5

2
3

0

4
2

6

4 9

2
3

7
7

4
6

1

2 7

5
5

6
1

2
8

4

5. If all dij ≥ λi + µj, then the flow is optimal. Stop.

6. If not, (e.g., (i, j) = (2, 1), where λ2 + µ1 = 9 > d21 = 2) we attempt to increase
the flow in arc (i, j) for some (i, j) such that λi+µj > dij. We seek an adjustment of
+ϵ to the flow in arc (i, j) which keeps the solution feasible (and therefore preserves
total supplies and demands). In our case we do this by

6− ϵ 2 + ϵ 0 0

+ϵ 3− ϵ 7 0

0 0 1 8

58

and pick ϵ as large as possible (without any flow going negative) to obtain a new
flow (for ϵ = 3).

In a non-degenerate problem there will be only one way to do this. The operation
is perhaps clearer in the network picture.

1

2 + ǫ

3− ǫ

6− ǫ

7

8

+ǫ

We attempt to increase flow in the dotted arc. Adding an arc to a spanning tree
creates a circuit. Increase flow around the circuit until an arc in the spanning tree
drops out, leaving a new spanning tree. The new solution is

1

3

3

5

7

8

6. Now return to step 3 and recompute node numbers:

λi \ µj 5 3 7 9

0 3
5

5
3

7

4
9

6

−3 3
2

0

7
7

4
6

1

−5 0

5
−2

6
1

2
8

4

In our example we obtain λi = 0,−3,−5 and µj = 5, 3, 7, 9 at the next stage. We
find dij < λi+µj for (i, j) = (1, 3), (1, 4) and (2, 4). Increase the flow in (2, 4) by 7
to obtain the new flow below. This is now optimal, as we can check from the final

59

node numbers that dij ≥ λi + µj everywhere.

λi \ µj 5 3 2 4

0 3
5

5
3

2

4
4

6

−3 3
2

0

7
−1

4
7

1

0 5

5
3

6
8

2
1

4

Remark. The route around which you may need to alter flows can be quite
complicated but it is always clear how you should do it. For example, had we tried
to increase the flow in arc (3, 1) instead of (2, 1) at step 5 we would have obtained

6− ϵ 2 + ϵ 0 0

0 3− ϵ 7 + ϵ 0

+ϵ 0 1− ϵ 8

To summarise:

1. Pick initial feasible solution with m+ n− 1 non-zero flows (NW corner rule).

2. Set λ1 = 0 and compute λi, µj using dij = λi+µj on arcs with non-zero flows.

3. If dij ≥ λi + µj for all (i, j) then flow is optimal.

4. If not, pick (i, j) for which dij < λi + µj.

5. Increase flow in arc (i, j) by as much as possible without making the flow in
any other arc negative. Return to 2.

60

12.2 The assignment problem

The assignment problem concerns minimizing the cost of assigning n agents to
n jobs, where cij is the cost of assigning job j to agent i. The aim is to

minimize
xij∈{0,1}

n∑
i=1

n∑
j=1

cijxij

subject to
n∑

j=1

xij = 1,
n∑

i=1

xij = 1 for all i, j ∈ {1, . . . , n}. (3)

Lemma 12.1. A feasible solution {xij} to (3) is optimal if there exist {λi}, {µj}
such that λi + µj ≤ cij for all i, j, and λi + µj = cij if xij = 1.

Unfortunately, this cannot be solved using the transportation algorithm. This
is because of the high amount of degeneracy. The size of the basis (number of
xij > 0) in a general transportation problem is ‘#rows + #columns −1. We rely
on this to calculate the λi and µj. But a solution to an assignment problem has
only ‘#rows’ non-zero variables.

We can search for node numbers in another way. Consider the cost matrix

5 3 4

2 7 4

5 6 7

We notice that however the 3 agents are assigned to the 3 tasks the costs in the rows
1, 2, 3 will be at least 3, 2, and 5, respectively. Subtracting these row minimums
from each row we see the problem is equivalent to one with costs

2 0 1
3

0 5 2
2

0 1 2
5

61

Similarly, the cost incurred in the third column must be at least 1, so subtracting
1 from each entry in that column we arrive at an equivalent problem

2 0 0
3

0 5 1
2

0 1 1
5

0 0 1

On the example sheet there is an example in which after operations like these
we are done. But in this example there does not yet exist a set of 3 ‘independent
0s’, i.e. 3 0s which share no common rows or columns.

We proceed with Step 2 of the so-called Hungarian algorithm (non-
examinable).
Step 1 is to create at least one 0 into each row and column, as above.
Step 2 is to ‘cover’ all the 0s with the minimum number of ‘lines’ (horizontal
through rows and vertical through columns). In the cost matrix above, the 0s are
covered by a minimum of two lines: one down column 1 and one across row 1. Now
we add a constant to every cost in covered columns, and subtract it from every
cost in an uncovered rows (where the constant is the minimum of costs in cells not
covered); in our example that is 1 = min{5, 1, 1, 1}; so we add 1 to costs in the
first column and subtract 1 from costs in rows 2 and 3, arriving at a equivalent
problem:

3
1

0 0
3

1
0 4 0

3

0 0
1

0
6

− 1 0 1

Now a solution is easily spotted, as shown. Agents 1, 2, 3 are assigned to tasks 2,
1, 3, respectively. The minimum cost is 12 (which is in fact the sum of all the node
numbers, since the dual objective function is

∑
i λi +

∑
j µj). The node numbers

λ = (3, 3, 6) and µ = (−1, 0, 1) are exactly what we need to apply Lemma 12.1. In
general we might need to repeat step 2 at this point.

62

It can be reasoned that Step 2 always increases by at least 1 the number of lines
required to cover the 0s. Once n lines are required to cover we have n independent
0s and the optimal assignment is then clear. The problem of finding the minimum
number of lines that ‘cover’ the 0s can be cast as a minimum-cut problem and
solved by using the Ford-Fulkerson algorithm to finds the maximum number of
independent 0s. This is König’s theorem: that states that the minimum number
of lines that cover the 0s equals the maximum number of independent 0s. It can
be proved by applying min cut = max flow to a suitable network (see if you can
think what network provides the proof). Unlike the transportation algorithm, the
running time of the Hungarian algorithm is polynomial, as O(n4).

12.3 *Simplex-on-a-graph*

The transportation algorithm can easily be generalised to a problem of minimizing
costs in a general network in which there is a constraint 0 ≤ xij < ∞ on each
directed arc (i, j), and a flow bi enters the network at each node i (though it
is hard to keep track of all the numbers by hand). This has been discussed in
Section 11.4.

Here we don’t label sources anddestinations separately, but do allow bi ≥ 0
and bi ≤ 0. Clearly,

∑
i bi = 0 for conservation of flow. The simplex-on-a-

graph algorithm solves this problem in an identical fashion to the transportation
algorithm. Once again a basic solution is a spanning tree of non-zero flow arcs.
Suppose there are n nodes.

1. Pick an initial basic feasible solution. Obtain n− 1 non-zero flow arcs.

2. Set λ1 = 0 and compute λi on other nodes using dij − λi + λj = 0 on arcs of
the spanning tree.

3. Compute dij − λi+ λj for other arcs. If all these are ≥ 0 then optimal. If not,
pick (i, j) such that dij − λi + λj < 0.

4. Add arc (i, j) to the tree. This creates a circuit. Increase flow around the
circuit (in direction of arc (i, j)) until one non-zero flow drops to zero and a
new basic solution is created. Return to 2.

63

Appendix

Non-examinable This is not done in lectures, but provides further insight about
why ∇ϕ(b) = λ. Let P (b) be the problem: maximize f(x) : g(x) ≤ b, x ∈ Rn. Let
ϕ(b) be its optimal value.

Theorem 4.5. Suppose f and g are continuously differentiable on X = Rn, and
that for each b there exist unique

� x∗(b) optimal for P (b), and

� λ∗(b) ∈ Rm, λ∗(b) ≥ 0 such that ϕ(b) = supx∈X{f(x) + λ∗(b)⊤(b− g(x))}.

If x∗ and λ∗ are continuously differentiable, then

∂ϕ(b)

∂bi
= λ∗i (b). (4)

Proof.
ϕ(b) = L(x∗, λ∗) = f(x∗) + λ∗(b)⊤(b− g(x∗))

Since L(x∗, λ∗) is stationary with respect to x∗j , we have for each j,

∂L(x∗, λ∗)

∂x∗j
= 0 .

For each k we have either gk(x
∗) = bk, or gk(x

∗) < bk. Since λ∗(b)⊤(b− g(x∗)) = 0
we have in the later case, λ∗k = 0, and so ∂λ∗k/∂bi = 0. So

∂ϕ(b)

∂bi
=

∂L(x∗, λ∗)

∂bi
+

n∑
j=1

∂L(x∗, λ∗)

∂x∗j

∂x∗j
∂bi

.

On the r.h.s. above, the second term is 0 and the first term is

∂L(x∗, λ∗)

∂bi
= λ∗i (b) +

m∑
k=1

∂λ∗k(b)

∂bi

[
bk − gk(x

∗(b))
]
.

Now the second term on the r.h.s. above is 0, and so we have (4).

64

Index

α-smooth, 2

anti-symmetric matrix, 44

assignment problem, 61

basic feasible solution, 25

basic solution, 25

basic variable, 25

basis, 25

β-smooth, 6

bounded, 1

capacity, 48

choice of pivot column, 31

circulation, 52

circulation problem, minimal cost, 52

closed network, 52

complementary slackness, 14, 36

concave function, 2

condition number, 7

convex function, 2

convex set, 2

cut, 48

diet problem, 39

epigraph, 3

extreme point, 23

feasible, 1

feasible circulation, 52

feasible set, 1

Ford-Fulkerson algorithm, 50

functional constraints, 1

Fundamental Theorem of LP, 24

Gradient descent algorithm, 2

Hall’s theorem, 51

Hessian, 5

Hungarian algorithm, 62

König’s theorem, 63

Lagrange multiplier, 11
Lagrangian, 11
Lagrangian dual problem, 19, 20
Lagrangian sufficiency theorem, 11
learning-rate, 5
linear programming problem, 23

machine learning, 9
max-flow/min-cut, 48
minimum cost circulation problem, 52
mixed strategy, 42

neural network, 9
Newton’s method, 7
node numbers, 53
non-basic variable, 25
non-degenerate, 25
non-negative definite, 5

objective function, 1
optimal solution, 1

pay-off matrix, 41
perfect matching, 51
pivot, 30
pivot column, 29
pivot row, 30
pivoting, 30
potentials, 53
primal problem, 20
primal/dual theory, 35

regional constraints, 1

saddle-point, 41
shadow prices, 19, 38, 39

65

sigmoid, 9
simplex, 27
simplex algorithm, 28
simplex tableau, 28
simplex-on-a-graph algorithm, 63
slack variable, 1, 13
spanning tree, 57
strictly convex, 2
strong duality, 20
strongly convex, 2, 5
support, 25
supporting hyperplane theorem, 3

tableau, 28
tension, 53
tight, 36
transportation algorithm, 57
transportation problem, 53
tree, 57
two person zero-sum games, 41

value function, 15, 18
value of the flow, 48
value of the game, 43

weak duality, 34

66

67

	Convexity
	Generic optimization problem
	Gradient descent
	Convexity

	Gradient descent and Newton's method
	Second-order conditions
	Convergence of gradient descent
	Newton's method
	Neural networks

	Lagrangian Methods
	The Lagrangian sufficiency theorem
	Example: use of the Lagrangian sufficiency theorem
	Strategy to solve problems with the Lagrangian sufficiency theorem
	Example: further use of the Lagrangian sufficiency theorem
	Inequality constraints and complementary slackness
	Lagrangian methods might not work
	Large deviations
	Example: use of the Lagrangian sufficiency theorem

	The Lagrangian Dual
	Lagrangian necessity
	Shadow prices
	The Lagrangian dual problem
	Barrier methods

	Linear Programming
	Extreme points and optimality
	Basic solutions
	Preview of the simplex method

	The Simplex Method
	The simplex algorithm
	Choice of initial basic feasible solution
	Choice of pivot column

	The Dual Linear Program
	The dual problem for LP
	The weak duality theorem in the case of LP
	Sufficient conditions for optimality
	The utility of primal-dual theory
	Primal-dual relationships

	Shadow prices
	Dual problem and the final tableau
	Shadow prices and sensitivity analysis
	Shadow prices and the diet problem

	Two Person Zero-Sum Games
	Games with a saddle-point
	Example: Two-finger Morra, a game without a saddle-point
	Determination of an optimal strategy
	Example: Colonel Blotto
	Example: Enforcer-evader game
	Example: Hider-searcher game

	Maximal Flow in a Network
	Max-flow/min-cut theory
	Ford-Fulkerson algorithm
	Hall's matching theorem

	Minimum Cost Circulation Problems
	Minimal cost circulations
	Sufficient conditions for a minimal cost circulation
	The transportation problem
	Example: optimal power generation and distribution

	Transportation and Assignment Problems
	The transportation algorithm
	The assignment problem
	Simplex-on-a-graph

	Index

